【文献速读】Inception发展和1X1卷积核

本文介绍了1X1卷积核的作用,它在保持图像特征尺度的同时实现通道间的交互,降低计算复杂度。Inception V1通过不同大小的卷积核捕获不同尺寸的特征,而Inception V2则通过2个3x3卷积替换5x5卷积,减少参数并避免表征性瓶颈。文章讨论了如何通过1Xn和nX1非对称卷积进一步优化网络结构。
摘要由CSDN通过智能技术生成

认识1X1卷积核

  在速读文章前,我们要认识一下1X1卷积核。常用的卷积核有1X1,3X3,5X5(奇数)。根据一些文章的经验,更大的卷积核没有太大的意义。
  卷积层输入输出形状的计算公式:
N = ( W − F + 2 P ) / S + 1 N = (W − F + 2P )/S+1 N=(WF+2P)/S+1
  卷积核的形状为1X1,令步长 S = 1 S=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值