最近通读了inception的四篇论文,在此做一下笔记。
先给出这四篇论文的地址:
Going deeper with convolutions:https://arxiv.org/pdf/1409.4842.pdf
Batch Normalization: https://arxiv.org/pdf/1502.03167.pdf
Rethinking the Inception Architecture for Computer Vision:https://arxiv.org/pdf/1512.00567.pdf
Inception-v4, Inception-ResNet: https://arxiv.org/pdf/1602.07261.pdf
Inception-v1
在这篇轮文之前,卷积神经网络的性能提高都是依赖于提高网络的深度和宽度,而这篇论文是从网络结构上入手,改变了网络结构,所以个人认为,这篇论文价值很大。
该论文的主要贡献:提出了inception的卷积网络结构。
从以下三个方面简单介绍这篇论文:为什么提出Inception,Inception结构,Inception作用
为什么提出Inception
提高网络最简单粗暴的方法就是提高网络的深度和宽度,即增加隐层和以及各层神经元数目。但这种简单粗暴的方法存在一些问题:
- 会导致更大的参数空间,更容易过拟合
- 需要更多的计算资源
- 网络越深,梯度容易消失,优化困难(这时还没有提出BN时,网络的优化极其困难)
基于此,我们的目标就是,提高网络计算资源的利用率,在计算量不变的情况下,提高网络的宽度和深度。
作者认为,解决这种困难的方法就是,把全连接改成稀疏连接,卷积层也是稀疏连接,但是不对称的稀疏数据数值计算效率低下,因为硬件全是针对密集矩阵优化的,所以,我们要找到卷积网络可以近似的最优局部稀疏结构,并且该结构下可以用现有的密度矩阵计算硬件实现,产生的结果就是Inception。
Inception结构

首先看第一个结构,有四个通道,有1*1、3*3、