hadoop 实现 Join reduce side join + BloomFilter

在某些情况下,SemiJoin 抽取出来的小表的 key 集合在内存中仍然存放不下,这时候可以使
用 BloomFiler 以节省空间。
BloomFilter 最常见的作用是:判断某个元素是否在一个集合里面。它最重要的两个方法是:
add() 和 contains()。最大的特点是不会存在 false negative,即:如果 contains()返回 false,
则该元素一定不在集合中,但会存在一定的 true negative,即:如果 contains()返回 true,则
该元素可能在集合中。
因而可将小表中的 key 保存到 BloomFilter 中,在 map 阶段过滤大表,可能有一些不在小表
中的记录没有过滤掉(但是在小表中的记录一定不会过滤掉),这没关系,只不过增加了少量的网络 IO 而已。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值