【蓝桥杯】真题训练 - 第八届蓝桥杯省赛C/C++大学B组真题解析

本文解析了一系列编程挑战题,包括计算购物所需现金、寻找等差素数数列、金字塔形金属堆重量分布、六格分割方法计数、字符串匹配算法、日期格式转换、包子数量组合、正方形巧克力分割等问题,提供了完整的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一题

    小明刚刚找到工作,老板人很好,只是老板夫人很爱购物。老板忙的时候经常让小明帮忙到商场代为购物。小明很厌烦,但又不好推辞。

    这不,XX大促销又来了!老板夫人开出了长长的购物单,都是有打折优惠的。
    小明也有个怪癖,不到万不得已,从不刷卡,直接现金搞定。
    现在小明很心烦,请你帮他计算一下,需要从取款机上取多少现金,才能搞定这次购物。

    取款机只能提供100元面额的纸币。小明想尽可能少取些现金,够用就行了。
    你的任务是计算出,小明最少需要取多少现金。

以下是让人头疼的购物单,为了保护隐私,物品名称被隐藏了。
-----------------
****     180.90       88折
****      10.25       65折
****      56.14        9折
****     104.65        9折
****     100.30       88折
****     297.15        半价
****      26.75       65折
****     130.62        半价
****     240.28       58折
****     270.62        8折
****     115.87       88折
****     247.34       95折
****      73.21        9折
****     101.00        半价
****      79.54        半价
****     278.44        7折
****     199.26        半价
****      12.97        9折
****     166.30       78折
****     125.50       58折
****      84.98        9折
****     113.35       68折
****     166.57        半价
****      42.56        9折
****      81.90       95折
****     131.78        8折
****     255.89       78折
****     109.17        9折
****     146.69       68折
****     139.33       65折
****     141.16       78折
****     154.74        8折
****      59.42        8折
****      85.44       68折
****     293.70       88折
****     261.79       65折
****      11.30       88折
****     268.27       58折
****     128.29       88折
****     251.03        8折
****     208.39       75折
****     128.88       75折
****      62.06        9折
****     225.87       75折
****      12.89       75折
****      34.28       75折
****      62.16       58折
****     129.12        半价
****     218.37        半价
****     289.69        8折
--------------------

需要说明的是,88折指的是按标价的88%计算,而8折是按80%计算,余者类推。
特别地,半价是按50%计算。

请提交小明要从取款机上提取的金额,单位是元。
答案是一个整数,类似4300的样子,结尾必然是00,不要填写任何多余的内容。

答案:5200

计算

#include <iostream>
using namespace std;

int main(int argc, char** argv) {
	double res = (180.90* 0.88 + 
10.25 * 0.65 +
56.14* 0.9 +
104.65*0.9+
100.30* 0.88+
297.15*0.5+
26.75* 0.65+
130.62*0.5+
240.28* 0.58+
270.62*0.8+
115.87*0.88+
247.34* 0.95+
73.21* 0.9+
101.00*0.5+
79.54*0.5+
 278.44* 0.7+
 199.26* 0.5+
12.97*0.9+
166.30*0.78+
125.50*0.58+
84.98*0.9+
113.35*0.68+
166.57*0.5+
42.56*0.9+
81.90*0.95+
131.78*0.8+
255.89*0.78+
109.17*0.9+
 146.69*0.68+
139.33*0.65+
141.16*0.78+
154.74*0.8+
59.42*0.8+
 85.44* 0.68+
293.70* 0.88+
261.79* 0.65+
11.30*0.88+
268.27*0.58+
128.29*0.88+
 251.03* 0.8+
208.39* 0.75+
128.88* 0.75+
 62.06* 0.9+
225.87* 0.75+
12.89*0.75+
34.28* 0.75+
62.16* 0.58+
 129.12*0.5+
218.37*0.5+
289.69*0.8);
cout << res;
	return 0;
}

第二题

2,3,5,7,11,13,....是素数序列。
类似:7,37,67,97,127,157 这样完全由素数组成的等差数列,叫等差素数数列。
上边的数列公差为30,长度为6。

2004年,格林与华人陶哲轩合作证明了:存在任意长度的素数等差数列。
这是数论领域一项惊人的成果!

有这一理论为基础,请你借助手中的计算机,满怀信心地搜索:

长度为10的等差素数列,其公差最小值是多少?

注意:需要提交的是一个整数,不要填写任何多余的内容和说明文字。

答案:210

枚举

对公差进行枚举,而不是从一堆素数中找10个公差一样的等差素数数列。对公差枚举,固定了公差,判断以该公差为距离的数是否为素数,这样更好的处理和判断

#include <iostream>
using namespace std;

const int MAX_N = 10000;
bool prime[MAX_N];

//对前10000个数筛选素数出来 
void filter(){
	prime[1] = false;
	for(int i = 2; i < MAX_N; i++){		//对数组初始化true 
		prime[i] = true;
	}
	for(int i = 2; i < MAX_N; i++){		
		for(int j = i*2; j < MAX_N; j+=i){	 //通过倍数对素数进行筛选 
			prime[j] = false;			//如,2的倍数的数都不是素数, 
		}
	}
} 

int main(int argc, char** argv) {
	filter();
	
	for(int i = 1; i*10 < MAX_N; i++){ //枚举公差 
		for(int j = 2; j + i*10 < MAX_N; j++){	//枚举素数,从2开始 
			if(prime[j]){	//如果该数是素数 
				int d = j;	//从该项开始往后10个素数判断是否满足条件 
				int count = 1;	//计算 
				for(int k = 2; k <= 10; k++){
					if(prime[d+i]){	//对公差为i的数进行判断是否为素数,是继续, 
						d = d+i;
						count ++;
					}else{		//否直接退出,该公差不满足。 
						break;
					}
				}
				if(count == 10){
					cout << i;
				} 
			}
		}
	}
	
	return 0;
}

 

第三题 

X星球的高科技实验室中整齐地堆放着某批珍贵金属原料。

每块金属原料的外形、尺寸完全一致,但重量不同。
金属材料被严格地堆放成金字塔形。

                             7
                            5 8
                           7 8 8
                          9 2 7 2
                         8 1 4 9 1
                        8 1 8 8 4 1
                       7 9 6 1 4 5 4
                      5 6 5 5 6 9 5 6
                     5 5 4 7 9 3 5 5 1
                    7 5 7 9 7 4 7 3 3 1
                   4 6 4 5 5 8 8 3 2 4 3
                  1 1 3 3 1 6 6 5 5 4 4 2
                 9 9 9 2 1 9 1 9 2 9 5 7 9
                4 3 3 7 7 9 3 6 1 3 8 8 3 7
               3 6 8 1 5 3 9 5 8 3 8 1 8 3 3
              8 3 2 3 3 5 5 8 5 4 2 8 6 7 6 9
             8 1 8 1 8 4 6 2 2 1 7 9 4 2 3 3 4
            2 8 4 2 2 9 9 2 8 3 4 9 6 3 9 4 6 9
           7 9 7 4 9 7 6 6 2 8 9 4 1 8 1 7 2 1 6
          9 2 8 6 4 2 7 9 5 4 1 2 5 1 7 3 9 8 3 3
         5 2 1 6 7 9 3 2 8 9 5 5 6 6 6 2 1 8 7 9 9
        6 7 1 8 8 7 5 3 6 5 4 7 3 4 6 7 8 1 3 2 7 4
       2 2 6 3 5 3 4 9 2 4 5 7 6 6 3 2 7 2 4 8 5 5 4
      7 4 4 5 8 3 3 8 1 8 6 3 2 1 6 2 6 4 6 3 8 2 9 6
     1 2 4 1 3 3 5 3 4 9 6 3 8 6 5 9 1 5 3 2 6 8 8 5 3
    2 2 7 9 3 3 2 8 6 9 8 4 4 9 5 8 2 6 3 4 8 4 9 3 8 8
   7 7 7 9 7 5 2 7 9 2 5 1 9 2 6 5 3 9 3 5 7 3 5 4 2 8 9
  7 7 6 6 8 7 5 5 8 2 4 7 7 4 7 2 6 9 2 1 8 2 9 8 5 7 3 6
 5 9 4 5 5 7 5 5 6 3 5 3 9 5 8 9 5 4 1 2 6 1 4 3 5 3 2 4 1
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

其中的数字代表金属块的重量(计量单位较大)。
最下一层的X代表30台极高精度的电子秤。

假设每块原料的重量都十分精确地平均落在下方的两个金属块上,
最后,所有的金属块的重量都严格精确地平分落在最底层的电子秤上。
电子秤的计量单位很小,所以显示的数字很大。

工作人员发现,其中读数最小的电子秤的示数为:2086458231

请你推算出:读数最大的电子秤的示数为多少?

注意:需要提交的是一个整数,不要填写任何多余的内容。

答案:72665192664

模拟计算,注意计量单位的变化和大数的输出 

#include <iostream>
#include <algorithm>
using namespace std;

int main(int argc, char** argv) {
	double a[100][100];
	//录入金字塔数组,别傻傻手动输入啊!!!直接复制粘贴 
	for(int i = 1; i <= 29; i++){
		for(int j = 1; j <= i; j++){
//			cin >> a[i][j];
			scanf("%lf",&a[i][j]);
		}
	}
	
	for(int i = 2; i <= 30; i++){
		for(int j = 1; j <= i; j++){
			a[i][j] += (a[i-1][j-1]/2 + a[i-1][j]/2);
		}
	} 
	sort(a[30]+1, a[30]+31);	//记得排序,输出最大的数 
//	cout << (2086458231/a[30][1])*a[30][30];	//科学计数法需要转换 
//	注意计量单位!,所以不能直接输出啊a[30]a[30],需要根据题意转换成它的计量单位 
	printf("%lf", (2086458231/a[30][1])*a[30][30]);	//直接用printf大数格式输出 

	return 0;
}

 

第四题

6x6的方格,沿着格子的边线剪开成两部分。
要求这两部分的形状完全相同。

如图:p1.png, p2.png, p3.png 就是可行的分割法。

试计算:
包括这3种分法在内,一共有多少种不同的分割方法。
注意:旋转对称的属于同一种分割法。

请提交该整数,不要填写任何多余的内容或说明文字。

答案:509 

#include <iostream>
using namespace std;
 
int a[7][7];
int v[7][7];
int count;

void dfs(int x, int y){
	if(x == 0 || x == 6 || y ==0 || y == 6){
		count++;
		return ;
	}
	
	v[x][y] = 1;
	v[6-x][6-y] = 1;
	
	if(v[x+1][y] == 0){
		dfs(x+1, y);
		v[x+1][y] = 0;
		v[6-(x+1)][6-y] = 0;
	} 
	if(v[x][y+1] == 0){
		dfs(x, y+1);
		v[x][y+1] = 0;
		v[6-x][6-(y+1)] = 0;
	}
	if(v[x-1][y] == 0){
		dfs(x-1, y);
		v[x-1][y] = 0;
		v[6-(x-1)][6-y] = 0;
	}
	if(v[x][y-1] == 0){
		dfs(x, y-1);
		v[x][y-1] = 0;
		v[6-x][6-(y-1)] = 0;
	}
	
}

int main(int argc, char** argv) {
	dfs(3, 3);
	cout << count / 4;
	return 0;
}

 

第五题

求1个整数的第k位数字有很多种方法。
以下的方法就是一种。
// 求x用10进制表示时的数位长度
int len(int x){
    if(x<10) return 1;
    return len(x/10)+1;
}
// 取x的第k位数字
int f(int x, int k){
    if(len(x)-k==0) return x%10;
    return _____________________;  //填空
}
int main()
{
    int x = 23574;
    printf("%d\n", f(x,3));
    return 0;
}

对于题目中的测试数据,应该打印5。

请仔细分析源码,并补充划线部分所缺少的代码。

注意:只提交缺失的代码,不要填写任何已有内容或说明性的文字。

答案:f(x/10, k) 

#include <iostream>
using namespace std;

// 求x用10进制表示时的数位长度
int len(int x){
	if(x < 10) return 1;
	return len(x/10) + 1;
}

// 取x的第k位数字
int f(int x, int k){
	if(len(x)-k == 0) return x%10;
//	return _____________________;? //填空
	return f(x/10, k);
}
int main()
{
	int x = 23574;
	printf("%d\n", f(x, 3));
	return 0;
}

 

第六题

最大公共子串长度问题就是:
求两个串的所有子串中能够匹配上的最大长度是多少。

比如:"abcdkkk" 和 "baabcdadabc",
可以找到的最长的公共子串是"abcd",所以最大公共子串长度为4。

下面的程序是采用矩阵法进行求解的,这对串的规模不大的情况还是比较有效的解法。

请分析该解法的思路,并补全划线部分缺失的代码。
#include <stdio.h>
#include <string.h>

#define N 256
int f(const char* s1, const char* s2)
{
    int a[N][N];
    int len1 = strlen(s1);
    int len2 = strlen(s2);
    int i,j;
    
    memset(a,0,sizeof(int)*N*N);
    int max = 0;
    for(i=1; i<=len1; i++){
        for(j=1; j<=len2; j++){
            if(s1[i-1]==s2[j-1]) {
                a[i][j] = __________________________;  //填空
                if(a[i][j] > max) max = a[i][j];
            }
        }
    }
    
    return max;
}

int main()
{
    printf("%d\n", f("abcdkkk", "baabcdadabc"));
    return 0;
}

答案:  a[i-1][j-1] + 1

#include <stdio.h>
#include <string.h>

#define N 256
int f(const char* s1, const char* s2)
{
 	int a[N][N];
	int len1 = strlen(s1);
	int len2 = strlen(s2);
	int i, j;
	
	memset(a, 0, sizeof(int)*N*N);
	int max = 0;
	for(i=1; i<=len1; i++){
		for(j=1; j<=len2; j++){
			if(s1[i-1] == s2[j-1]) {
//				a[i][j] = __________________________;? //填空
				a[i][j] = a[i-1][j-1] + 1; 
				if(a[i][j] > max) 
					max = a[i][j];
			}
		}
	}
	
	return max;
}

int main()
{
	printf("%d\n", f("abcdkkk", "baabcdadabc"));
	return 0;
}

第七题

小明正在整理一批历史文献。这些历史文献中出现了很多日期。小明知道这些日期都在1960年1月1日至2059年12月31日。令小明头疼的是,这些日期采用的格式非常不统一,有采用年/月/日的,有采用月/日/年的,还有采用日/月/年的。更加麻烦的是,年份也都省略了前两位,使得文献上的一个日期,存在很多可能的日期与其对应。  

比如02/03/04,可能是2002年03月04日、2004年02月03日或2004年03月02日。  

给出一个文献上的日期,你能帮助小明判断有哪些可能的日期对其对应吗?

输入
----
一个日期,格式是"AA/BB/CC"。  (0 <= A, B, C <= 9)  

输入
----
输出若干个不相同的日期,每个日期一行,格式是"yyyy-MM-dd"。多个日期按从早到晚排列。  

样例输入
----
02/03/04  

样例输出
----
2002-03-04  
2004-02-03  
2004-03-02  

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗  < 1000ms

#include <iostream>
#include <algorithm>
using namespace std;
 
typedef struct{
	int n1, n2, n3;
}node;

bool is(int y){
	return (y % 4 == 0 && (y % 100 != 0 && y % 400 == 0));
}

int leep[2][13] = {
	{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
	{0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
};

//比较 
bool cmp(node a, node b){
	if(a.n1 != b.n1){
		return a.n1 < b.n1;
	}else{
		if(a.n2 != b.n2){
			return a.n2 < b.n2; 
		}else{
			return a.n3  < b.n3;
		} 
	}
}

int a[5];	//输入 
node b[5];	//用来存储可能出现的几种日期 
int y, m, d;

int main(int argc, char** argv) {
//	cin >> a[0] >> a[1] >> a[2];
	scanf("%d/%d/%d", &a[0], &a[1], &a[2]);
	int w = 0;
	for(int i = 1; i <= 3; i ++){
		if(i == 1){
			y = a[0];
			m = a[1];
			d = a[2];	
		}
		if(i == 2){
			m = a[0];
			d = a[1];
			y = a[2];
		}
		if(i == 3){
			d = a[0];
			y = a[1];
			m = a[2];
		}
		if(m <= 12 && m > 0){
			if(y < 60 ){
				y += 2000;
			}else{
				y += 1900;
			}
			if(d <= leep[is(y)][m] && d > 0){
				b[w].n1 = y;
				b[w].n2 = m;
				b[w].n3 = d;
				w++;
			}
		}
	}
	sort(b, b+w, cmp);
	for(int i = 0; i < w; i++){
		if(i != 0){
			if(b[i].n1 == b[i-1].n1 && b[i].n2 == b[i-1].n2 && b[i].n3 == b[i-1].n3){
				continue;
			}else{
				cout << b[i].n1 << "-" << b[i].n2 << "-" << b[i].n3 << "\n"; 
			}
		}else{
			cout << b[i].n1 << "-" << b[i].n2 << "-" << b[i].n3 << "\n"; 
		}
	}
	return 0;
}

第八题

8、包子凑数

小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有N种蒸笼,
其中第i种蒸笼恰好能放Ai个包子。每种蒸笼都有非常多笼,可以认为是无限笼。每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,
使得这若干笼中恰好一共有X个包子。

比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,
大叔就会选2笼3个的再加1笼5个的(也可能选出1笼3个的再加2笼4个的)。
当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有3种蒸笼,
分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。
小明想知道一共有多少种数目是包子大叔凑不出来的。
输入
第一行包含一个整数N。(1 <= N <= 100) 以下N行每行包含一个整数Ai。(1 <= Ai <= 100)
输出
---- 一个整数代表答案。如果凑不出的数目有无限多个,输出INF。
例如, 输入: 2 4 5
程序应该输出: 6
再例如, 输入: 2 4 6
程序应该输出: INF

样例解释:
对于样例1,凑不出的数目包括:1, 2, 3, 6, 7, 11。
对于样例2,所有奇数都凑不出来,所以有无限多个。
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。

还是不太懂。 

#include <iostream>
using namespace std;

int gcd(int a, int b){
	if(b == 0){
		return a;
	}else{
		return gcd(b, a%b);
	}
}


int main(int argc, char** argv) {
	int N;
	cin >> N;
	int a[100];
	int g = 0;
	int f[10000] = {0};
	f[0] = 1;
	for(int i = 0; i < N; i ++){
		cin >> a[i];
		if(i == 0){
			g = a[i];
		}else{
			g = gcd(g,  a[i]);
		}	
		for(int j = 0; j < 10000; j++){
			if(f[j]){
				f[j + a[i]] = 1;
			}
		} 
	}
	if(g != 1){
		cout << "INF\n"; 
	}else{
		int count = 0;
		for(int i = 0; i < 10000; i++){
			if(!f[i]){
				count ++;
			}
		}
		cout << count;
		
	}
	
	return 0;
}

 

第九题

9、分巧克力

儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
    小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。

    为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:

    1. 形状是正方形,边长是整数  
    2. 大小相同  

例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。

当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?

输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)  
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。   

输出
输出切出的正方形巧克力最大可能的边长。

样例输入:
2 10  
6 5  
5 6  

样例输出:
2

资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗  < 1000ms

妙 ,检查每个数(边长)是否满足条件,条件时能不能分成K份(K个小朋友),不可以的话边长-1

#include <iostream>
using namespace std;
#include <algorithm>

typedef struct{
	int h, w;
}node;

const int maxn = 1e5+7;
node a[maxn];
int n, k, mx = -1;	//N个小朋友,K块巧克力, mx长的那条边,即长 

bool check(int x){
	int count = 0;
	for(int i = 0; i < n; i++){
		count += (a[i].h/x)*(a[i].w/x);
	}
	if(count >= k){
		return true;
	}else{
		return false;
	}
} 

int main(int argc, char** argv) {
	cin >> n >> k;
	for(int i = 0; i < n; i++){
		cin >> a[i].h >> a[i].w;
		if(a[i].w > mx){
			mx = a[i].w;
		} 
		if(a[i].h > mx){
			mx = a[i].h;
		}
	} 
	int l = 1, r = mx, res;
	while(l <= r){
		int mid = (l + r) / 2;
		if(check(mid)){
			res = mid;
			l = mid + 1;
		} else{
			r = mid - 1;
		}
	} 
	cout << res;

	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值