第一题
小明刚刚找到工作,老板人很好,只是老板夫人很爱购物。老板忙的时候经常让小明帮忙到商场代为购物。小明很厌烦,但又不好推辞。
这不,XX大促销又来了!老板夫人开出了长长的购物单,都是有打折优惠的。
小明也有个怪癖,不到万不得已,从不刷卡,直接现金搞定。
现在小明很心烦,请你帮他计算一下,需要从取款机上取多少现金,才能搞定这次购物。
取款机只能提供100元面额的纸币。小明想尽可能少取些现金,够用就行了。
你的任务是计算出,小明最少需要取多少现金。
以下是让人头疼的购物单,为了保护隐私,物品名称被隐藏了。
-----------------
**** 180.90 88折
**** 10.25 65折
**** 56.14 9折
**** 104.65 9折
**** 100.30 88折
**** 297.15 半价
**** 26.75 65折
**** 130.62 半价
**** 240.28 58折
**** 270.62 8折
**** 115.87 88折
**** 247.34 95折
**** 73.21 9折
**** 101.00 半价
**** 79.54 半价
**** 278.44 7折
**** 199.26 半价
**** 12.97 9折
**** 166.30 78折
**** 125.50 58折
**** 84.98 9折
**** 113.35 68折
**** 166.57 半价
**** 42.56 9折
**** 81.90 95折
**** 131.78 8折
**** 255.89 78折
**** 109.17 9折
**** 146.69 68折
**** 139.33 65折
**** 141.16 78折
**** 154.74 8折
**** 59.42 8折
**** 85.44 68折
**** 293.70 88折
**** 261.79 65折
**** 11.30 88折
**** 268.27 58折
**** 128.29 88折
**** 251.03 8折
**** 208.39 75折
**** 128.88 75折
**** 62.06 9折
**** 225.87 75折
**** 12.89 75折
**** 34.28 75折
**** 62.16 58折
**** 129.12 半价
**** 218.37 半价
**** 289.69 8折
--------------------
需要说明的是,88折指的是按标价的88%计算,而8折是按80%计算,余者类推。
特别地,半价是按50%计算。
请提交小明要从取款机上提取的金额,单位是元。
答案是一个整数,类似4300的样子,结尾必然是00,不要填写任何多余的内容。
答案:5200
计算
#include <iostream>
using namespace std;
int main(int argc, char** argv) {
double res = (180.90* 0.88 +
10.25 * 0.65 +
56.14* 0.9 +
104.65*0.9+
100.30* 0.88+
297.15*0.5+
26.75* 0.65+
130.62*0.5+
240.28* 0.58+
270.62*0.8+
115.87*0.88+
247.34* 0.95+
73.21* 0.9+
101.00*0.5+
79.54*0.5+
278.44* 0.7+
199.26* 0.5+
12.97*0.9+
166.30*0.78+
125.50*0.58+
84.98*0.9+
113.35*0.68+
166.57*0.5+
42.56*0.9+
81.90*0.95+
131.78*0.8+
255.89*0.78+
109.17*0.9+
146.69*0.68+
139.33*0.65+
141.16*0.78+
154.74*0.8+
59.42*0.8+
85.44* 0.68+
293.70* 0.88+
261.79* 0.65+
11.30*0.88+
268.27*0.58+
128.29*0.88+
251.03* 0.8+
208.39* 0.75+
128.88* 0.75+
62.06* 0.9+
225.87* 0.75+
12.89*0.75+
34.28* 0.75+
62.16* 0.58+
129.12*0.5+
218.37*0.5+
289.69*0.8);
cout << res;
return 0;
}
第二题
2,3,5,7,11,13,....是素数序列。
类似:7,37,67,97,127,157 这样完全由素数组成的等差数列,叫等差素数数列。
上边的数列公差为30,长度为6。2004年,格林与华人陶哲轩合作证明了:存在任意长度的素数等差数列。
这是数论领域一项惊人的成果!有这一理论为基础,请你借助手中的计算机,满怀信心地搜索:
长度为10的等差素数列,其公差最小值是多少?
注意:需要提交的是一个整数,不要填写任何多余的内容和说明文字。
答案:210
枚举
对公差进行枚举,而不是从一堆素数中找10个公差一样的等差素数数列。对公差枚举,固定了公差,判断以该公差为距离的数是否为素数,这样更好的处理和判断
#include <iostream>
using namespace std;
const int MAX_N = 10000;
bool prime[MAX_N];
//对前10000个数筛选素数出来
void filter(){
prime[1] = false;
for(int i = 2; i < MAX_N; i++){ //对数组初始化true
prime[i] = true;
}
for(int i = 2; i < MAX_N; i++){
for(int j = i*2; j < MAX_N; j+=i){ //通过倍数对素数进行筛选
prime[j] = false; //如,2的倍数的数都不是素数,
}
}
}
int main(int argc, char** argv) {
filter();
for(int i = 1; i*10 < MAX_N; i++){ //枚举公差
for(int j = 2; j + i*10 < MAX_N; j++){ //枚举素数,从2开始
if(prime[j]){ //如果该数是素数
int d = j; //从该项开始往后10个素数判断是否满足条件
int count = 1; //计算
for(int k = 2; k <= 10; k++){
if(prime[d+i]){ //对公差为i的数进行判断是否为素数,是继续,
d = d+i;
count ++;
}else{ //否直接退出,该公差不满足。
break;
}
}
if(count == 10){
cout << i;
}
}
}
}
return 0;
}
第三题
X星球的高科技实验室中整齐地堆放着某批珍贵金属原料。
每块金属原料的外形、尺寸完全一致,但重量不同。
金属材料被严格地堆放成金字塔形。7
5 8
7 8 8
9 2 7 2
8 1 4 9 1
8 1 8 8 4 1
7 9 6 1 4 5 4
5 6 5 5 6 9 5 6
5 5 4 7 9 3 5 5 1
7 5 7 9 7 4 7 3 3 1
4 6 4 5 5 8 8 3 2 4 3
1 1 3 3 1 6 6 5 5 4 4 2
9 9 9 2 1 9 1 9 2 9 5 7 9
4 3 3 7 7 9 3 6 1 3 8 8 3 7
3 6 8 1 5 3 9 5 8 3 8 1 8 3 3
8 3 2 3 3 5 5 8 5 4 2 8 6 7 6 9
8 1 8 1 8 4 6 2 2 1 7 9 4 2 3 3 4
2 8 4 2 2 9 9 2 8 3 4 9 6 3 9 4 6 9
7 9 7 4 9 7 6 6 2 8 9 4 1 8 1 7 2 1 6
9 2 8 6 4 2 7 9 5 4 1 2 5 1 7 3 9 8 3 3
5 2 1 6 7 9 3 2 8 9 5 5 6 6 6 2 1 8 7 9 9
6 7 1 8 8 7 5 3 6 5 4 7 3 4 6 7 8 1 3 2 7 4
2 2 6 3 5 3 4 9 2 4 5 7 6 6 3 2 7 2 4 8 5 5 4
7 4 4 5 8 3 3 8 1 8 6 3 2 1 6 2 6 4 6 3 8 2 9 6
1 2 4 1 3 3 5 3 4 9 6 3 8 6 5 9 1 5 3 2 6 8 8 5 3
2 2 7 9 3 3 2 8 6 9 8 4 4 9 5 8 2 6 3 4 8 4 9 3 8 8
7 7 7 9 7 5 2 7 9 2 5 1 9 2 6 5 3 9 3 5 7 3 5 4 2 8 9
7 7 6 6 8 7 5 5 8 2 4 7 7 4 7 2 6 9 2 1 8 2 9 8 5 7 3 6
5 9 4 5 5 7 5 5 6 3 5 3 9 5 8 9 5 4 1 2 6 1 4 3 5 3 2 4 1
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X其中的数字代表金属块的重量(计量单位较大)。
最下一层的X代表30台极高精度的电子秤。假设每块原料的重量都十分精确地平均落在下方的两个金属块上,
最后,所有的金属块的重量都严格精确地平分落在最底层的电子秤上。
电子秤的计量单位很小,所以显示的数字很大。工作人员发现,其中读数最小的电子秤的示数为:2086458231
请你推算出:读数最大的电子秤的示数为多少?
注意:需要提交的是一个整数,不要填写任何多余的内容。
答案:72665192664
模拟计算,注意计量单位的变化和大数的输出
#include <iostream>
#include <algorithm>
using namespace std;
int main(int argc, char** argv) {
double a[100][100];
//录入金字塔数组,别傻傻手动输入啊!!!直接复制粘贴
for(int i = 1; i <= 29; i++){
for(int j = 1; j <= i; j++){
// cin >> a[i][j];
scanf("%lf",&a[i][j]);
}
}
for(int i = 2; i <= 30; i++){
for(int j = 1; j <= i; j++){
a[i][j] += (a[i-1][j-1]/2 + a[i-1][j]/2);
}
}
sort(a[30]+1, a[30]+31); //记得排序,输出最大的数
// cout << (2086458231/a[30][1])*a[30][30]; //科学计数法需要转换
// 注意计量单位!,所以不能直接输出啊a[30]a[30],需要根据题意转换成它的计量单位
printf("%lf", (2086458231/a[30][1])*a[30][30]); //直接用printf大数格式输出
return 0;
}
第四题
6x6的方格,沿着格子的边线剪开成两部分。
要求这两部分的形状完全相同。如图:p1.png, p2.png, p3.png 就是可行的分割法。
试计算:
包括这3种分法在内,一共有多少种不同的分割方法。
注意:旋转对称的属于同一种分割法。请提交该整数,不要填写任何多余的内容或说明文字。
答案:509
#include <iostream>
using namespace std;
int a[7][7];
int v[7][7];
int count;
void dfs(int x, int y){
if(x == 0 || x == 6 || y ==0 || y == 6){
count++;
return ;
}
v[x][y] = 1;
v[6-x][6-y] = 1;
if(v[x+1][y] == 0){
dfs(x+1, y);
v[x+1][y] = 0;
v[6-(x+1)][6-y] = 0;
}
if(v[x][y+1] == 0){
dfs(x, y+1);
v[x][y+1] = 0;
v[6-x][6-(y+1)] = 0;
}
if(v[x-1][y] == 0){
dfs(x-1, y);
v[x-1][y] = 0;
v[6-(x-1)][6-y] = 0;
}
if(v[x][y-1] == 0){
dfs(x, y-1);
v[x][y-1] = 0;
v[6-x][6-(y-1)] = 0;
}
}
int main(int argc, char** argv) {
dfs(3, 3);
cout << count / 4;
return 0;
}
第五题
求1个整数的第k位数字有很多种方法。
以下的方法就是一种。
// 求x用10进制表示时的数位长度
int len(int x){
if(x<10) return 1;
return len(x/10)+1;
}
// 取x的第k位数字
int f(int x, int k){
if(len(x)-k==0) return x%10;
return _____________________; //填空
}
int main()
{
int x = 23574;
printf("%d\n", f(x,3));
return 0;
}对于题目中的测试数据,应该打印5。
请仔细分析源码,并补充划线部分所缺少的代码。
注意:只提交缺失的代码,不要填写任何已有内容或说明性的文字。
答案:f(x/10, k)
#include <iostream>
using namespace std;
// 求x用10进制表示时的数位长度
int len(int x){
if(x < 10) return 1;
return len(x/10) + 1;
}
// 取x的第k位数字
int f(int x, int k){
if(len(x)-k == 0) return x%10;
// return _____________________;? //填空
return f(x/10, k);
}
int main()
{
int x = 23574;
printf("%d\n", f(x, 3));
return 0;
}
第六题
最大公共子串长度问题就是:
求两个串的所有子串中能够匹配上的最大长度是多少。比如:"abcdkkk" 和 "baabcdadabc",
可以找到的最长的公共子串是"abcd",所以最大公共子串长度为4。下面的程序是采用矩阵法进行求解的,这对串的规模不大的情况还是比较有效的解法。
请分析该解法的思路,并补全划线部分缺失的代码。
#include <stdio.h>
#include <string.h>#define N 256
int f(const char* s1, const char* s2)
{
int a[N][N];
int len1 = strlen(s1);
int len2 = strlen(s2);
int i,j;
memset(a,0,sizeof(int)*N*N);
int max = 0;
for(i=1; i<=len1; i++){
for(j=1; j<=len2; j++){
if(s1[i-1]==s2[j-1]) {
a[i][j] = __________________________; //填空
if(a[i][j] > max) max = a[i][j];
}
}
}
return max;
}int main()
{
printf("%d\n", f("abcdkkk", "baabcdadabc"));
return 0;
}
答案: a[i-1][j-1] + 1
#include <stdio.h>
#include <string.h>
#define N 256
int f(const char* s1, const char* s2)
{
int a[N][N];
int len1 = strlen(s1);
int len2 = strlen(s2);
int i, j;
memset(a, 0, sizeof(int)*N*N);
int max = 0;
for(i=1; i<=len1; i++){
for(j=1; j<=len2; j++){
if(s1[i-1] == s2[j-1]) {
// a[i][j] = __________________________;? //填空
a[i][j] = a[i-1][j-1] + 1;
if(a[i][j] > max)
max = a[i][j];
}
}
}
return max;
}
int main()
{
printf("%d\n", f("abcdkkk", "baabcdadabc"));
return 0;
}
第七题
小明正在整理一批历史文献。这些历史文献中出现了很多日期。小明知道这些日期都在1960年1月1日至2059年12月31日。令小明头疼的是,这些日期采用的格式非常不统一,有采用年/月/日的,有采用月/日/年的,还有采用日/月/年的。更加麻烦的是,年份也都省略了前两位,使得文献上的一个日期,存在很多可能的日期与其对应。
比如02/03/04,可能是2002年03月04日、2004年02月03日或2004年03月02日。
给出一个文献上的日期,你能帮助小明判断有哪些可能的日期对其对应吗?
输入
----
一个日期,格式是"AA/BB/CC"。 (0 <= A, B, C <= 9)输入
----
输出若干个不相同的日期,每个日期一行,格式是"yyyy-MM-dd"。多个日期按从早到晚排列。样例输入
----
02/03/04样例输出
----
2002-03-04
2004-02-03
2004-03-02资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
#include <iostream>
#include <algorithm>
using namespace std;
typedef struct{
int n1, n2, n3;
}node;
bool is(int y){
return (y % 4 == 0 && (y % 100 != 0 && y % 400 == 0));
}
int leep[2][13] = {
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
};
//比较
bool cmp(node a, node b){
if(a.n1 != b.n1){
return a.n1 < b.n1;
}else{
if(a.n2 != b.n2){
return a.n2 < b.n2;
}else{
return a.n3 < b.n3;
}
}
}
int a[5]; //输入
node b[5]; //用来存储可能出现的几种日期
int y, m, d;
int main(int argc, char** argv) {
// cin >> a[0] >> a[1] >> a[2];
scanf("%d/%d/%d", &a[0], &a[1], &a[2]);
int w = 0;
for(int i = 1; i <= 3; i ++){
if(i == 1){
y = a[0];
m = a[1];
d = a[2];
}
if(i == 2){
m = a[0];
d = a[1];
y = a[2];
}
if(i == 3){
d = a[0];
y = a[1];
m = a[2];
}
if(m <= 12 && m > 0){
if(y < 60 ){
y += 2000;
}else{
y += 1900;
}
if(d <= leep[is(y)][m] && d > 0){
b[w].n1 = y;
b[w].n2 = m;
b[w].n3 = d;
w++;
}
}
}
sort(b, b+w, cmp);
for(int i = 0; i < w; i++){
if(i != 0){
if(b[i].n1 == b[i-1].n1 && b[i].n2 == b[i-1].n2 && b[i].n3 == b[i-1].n3){
continue;
}else{
cout << b[i].n1 << "-" << b[i].n2 << "-" << b[i].n3 << "\n";
}
}else{
cout << b[i].n1 << "-" << b[i].n2 << "-" << b[i].n3 << "\n";
}
}
return 0;
}
第八题
8、包子凑数
小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有N种蒸笼,
其中第i种蒸笼恰好能放Ai个包子。每种蒸笼都有非常多笼,可以认为是无限笼。每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,
使得这若干笼中恰好一共有X个包子。比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,
大叔就会选2笼3个的再加1笼5个的(也可能选出1笼3个的再加2笼4个的)。
当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有3种蒸笼,
分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。
小明想知道一共有多少种数目是包子大叔凑不出来的。
输入
第一行包含一个整数N。(1 <= N <= 100) 以下N行每行包含一个整数Ai。(1 <= Ai <= 100)
输出
---- 一个整数代表答案。如果凑不出的数目有无限多个,输出INF。
例如, 输入: 2 4 5
程序应该输出: 6
再例如, 输入: 2 4 6
程序应该输出: INF样例解释:
对于样例1,凑不出的数目包括:1, 2, 3, 6, 7, 11。
对于样例2,所有奇数都凑不出来,所以有无限多个。
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入…” 的多余内容。
注意:
main函数需要返回0;
只使用ANSI C/ANSI C++ 标准;
不要调用依赖于编译环境或操作系统的特殊函数。
所有依赖的函数必须明确地在源文件中 #include
不能通过工程设置而省略常用头文件。
提交程序时,注意选择所期望的语言类型和编译器类型。
还是不太懂。
#include <iostream>
using namespace std;
int gcd(int a, int b){
if(b == 0){
return a;
}else{
return gcd(b, a%b);
}
}
int main(int argc, char** argv) {
int N;
cin >> N;
int a[100];
int g = 0;
int f[10000] = {0};
f[0] = 1;
for(int i = 0; i < N; i ++){
cin >> a[i];
if(i == 0){
g = a[i];
}else{
g = gcd(g, a[i]);
}
for(int j = 0; j < 10000; j++){
if(f[j]){
f[j + a[i]] = 1;
}
}
}
if(g != 1){
cout << "INF\n";
}else{
int count = 0;
for(int i = 0; i < 10000; i++){
if(!f[i]){
count ++;
}
}
cout << count;
}
return 0;
}
第九题
9、分巧克力
儿童节那天有K位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有N块巧克力,其中第i块是Hi x Wi的方格组成的长方形。为了公平起见,小明需要从这 N 块巧克力中切出K块巧克力分给小朋友们。切出的巧克力需要满足:
1. 形状是正方形,边长是整数
2. 大小相同例如一块6x5的巧克力可以切出6块2x2的巧克力或者2块3x3的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小Hi计算出最大的边长是多少么?
输入
第一行包含两个整数N和K。(1 <= N, K <= 100000)
以下N行每行包含两个整数Hi和Wi。(1 <= Hi, Wi <= 100000)
输入保证每位小朋友至少能获得一块1x1的巧克力。输出
输出切出的正方形巧克力最大可能的边长。样例输入:
2 10
6 5
5 6样例输出:
2资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
妙 ,检查每个数(边长)是否满足条件,条件时能不能分成K份(K个小朋友),不可以的话边长-1
#include <iostream>
using namespace std;
#include <algorithm>
typedef struct{
int h, w;
}node;
const int maxn = 1e5+7;
node a[maxn];
int n, k, mx = -1; //N个小朋友,K块巧克力, mx长的那条边,即长
bool check(int x){
int count = 0;
for(int i = 0; i < n; i++){
count += (a[i].h/x)*(a[i].w/x);
}
if(count >= k){
return true;
}else{
return false;
}
}
int main(int argc, char** argv) {
cin >> n >> k;
for(int i = 0; i < n; i++){
cin >> a[i].h >> a[i].w;
if(a[i].w > mx){
mx = a[i].w;
}
if(a[i].h > mx){
mx = a[i].h;
}
}
int l = 1, r = mx, res;
while(l <= r){
int mid = (l + r) / 2;
if(check(mid)){
res = mid;
l = mid + 1;
} else{
r = mid - 1;
}
}
cout << res;
return 0;
}