机器学习
文章平均质量分 78
八宝袋
同程旅行/一个研究推荐系统的Java开发/24校招
展开
-
Kaggle-泰坦尼克号-机器学习/数据挖掘学习笔记
本文是学习数据挖掘和机器学习模型的运用的一点笔记。原创 2022-06-20 22:12:45 · 766 阅读 · 0 评论 -
理解一下贝叶斯公式
贝叶斯定理通常,事件A在事件B发生的条件下发生和事件B在事件A发生的条件下发生的概率是不同的,但是有一定的相关性,贝叶斯公式就描述这个情况:P(A∣B)=P(B∣A)P(A)P(B)P(A|B)=\frac{P(B|A)P(A)}{P(B)}P(A∣B)=P(B)P(B∣A)P(A)P(A) 这是概率中最基本的符号,表示 A 出现的概率。比如在投掷骰子时,P(2) 指的是骰子出现数字“2”的概率,这个概率是 六分之一。P(B|A) 是条件概率的符号,表示事件 A 发生的条件下,事件 B 发生的概原创 2022-01-16 16:37:15 · 1642 阅读 · 0 评论 -
二元交叉熵 binary cross entropy
二元交叉熵 binary cross entropy理解一下这个损失函数,一般来说,适用于二分类任务,但是在几个推荐系统的paper中看到了这个损失函数,先上公式:Loss=−1N∑i=1Nyi⋅log(p(yi))+(1−y)⋅log(1−p(yi))Loss=-\frac1N\sum_{i=1}^Ny_i \cdot\log(p(y_i))+(1-y)\cdot\log(1-p(y_i))Loss=−N1i=1∑Nyi⋅log(p(yi))+(1−y)⋅log(1−p(yi))其中,原创 2022-01-13 16:39:16 · 3831 阅读 · 0 评论 -
邻近算法 KNN
待完善,预习用邻近算法 KNN,K-NearestNeighbor属于数据挖掘-分类技术 分类算法K最近邻即:每个样本可以用它最接近的K个邻近值来代表近邻算法就是将数据集合中的每一个记录进行分类的方法。基本思想要判断一个新数据的类别,就看它的邻居。根据新数据的特征得到在相应属性空间中的坐标,看附近的数据都是什么类别。KNN中的K表示邻居的数量,K=3就是通过最近的3个样本来判断数据类别。计算距离时,可以用两点间的直线距离(欧氏距离),也可以使用坐标轴距离绝对值的和(曼哈顿距离).原创 2021-04-05 23:37:59 · 1285 阅读 · 0 评论