笔记
文章平均质量分 87
八宝袋
同程旅行/一个研究推荐系统的Java开发/24校招
展开
-
Demographic Prediction. 人口统计预测相关调研
由于电影数据集的稀疏性,以及用户观看数量的不均匀,比如有的用户看了上百部电影,有的用户只看了20部,这就造成了用户向量中非零元素分布不均匀,为了减少用户向量的非零元素个数,作者提出了两个点,分别是“Which”和“What”,即:在哪个位置补充评分,和补充值为多少的评分。(1)TOP_S:物理意义就是选取矩阵分解评分预测结果最大的n个电影的下标,至于这个n是多少,就用下标的平方和的二次根来决定,让D的二范数等于S,这里作者也没说原因,我的猜测是尽量选取下标靠前的电影。作者说的逻辑回归的系数?原创 2022-10-23 21:23:49 · 901 阅读 · 1 评论 -
User-controllable Recommendation Against Filter Bubbles 阅读笔记
推荐系统通常面临filter bubbles的问题:基于用户特征和历史交互过度推荐同类项目。过滤气泡会沿着反馈循环增长,并在不经意间缩小用户兴趣。现有的工作通常通过结合除准确性之外的目标(例如多样性和公平性)来减轻过滤器泡沫。但是,它们通常会牺牲准确性,损害模型保真度和用户体验。更糟糕的是,用户不得不被动地接受推荐策略,并以低效且高延迟的方式影响系统,例如,不断提供反馈(例如,喜欢和不喜欢),直到系统识别出用户意图。【补充】关于。......原创 2022-08-05 23:35:23 · 682 阅读 · 0 评论 -
AutoField: Automating Feature Selection in Deep Recommender Systems 阅读笔记
特征质量对推荐性能有重要影响。因此,特征选择是开发基于深度学习的推荐系统的关键过程。然而,大多数现有的深度推荐系统都专注于设计复杂的神经网络,而忽略了特征选择过程。通常,他们只是将所有可能的特征输入到他们提出的深度架构中,或者由人类专家手动选择重要特征。前者导致非平凡的嵌入参数和额外的推理时间,而后者需要大量的专家知识和人力。在这项工作中,我们提出了一个AutoML框架,该框架可以以自动方式自适应地选择基本特征字段。具体来说,我们首先设计了一个可微控制器网络,它能够自动调整选择特定特征场的概率;......原创 2022-07-17 08:31:07 · 2513 阅读 · 2 评论 -
Disentangling Long and Short-Term Interests for Recommendation阅读笔记
WWW’ 22的文章对用户的长期兴趣和短期兴趣进行建模是准确推荐的关键。然而,由于没有用户兴趣的人工标注,现有的方法总是遵循这两个方面纠缠在一起的范式,这可能会导致推荐准确率和可解释性较差。为了解决这一问题,我们提出了一个对比学习框架,以区分长期和短期利益的推荐(CLSR)和自我监督。具体地说,我们首先提出了两个独立的编码器来独立地捕获不同时间尺度的用户兴趣。然后,我们从交互序列中提取长期和短期兴趣代理,作为用户兴趣的伪标签。然后设计成对对比任务来监督兴趣表示与其对应的兴趣代理之间的相似性。最后,由于长期兴原创 2022-07-01 18:31:36 · 928 阅读 · 0 评论 -
SASRec: Self-Attentive Sequential Recommendation阅读笔记
Self-Attentive Sequential Recommendation2018年的经典文章时序动态是许多现代推荐系统的一个关键特征,它们试图根据用户最近执行的操作来捕捉用户活动的“背景”。为了捕捉这种模式,出现了两种方法:马尔可夫链(MC)和递归神经网络(RNN)。马尔科夫链假设用户的下一个动作可以根据他们的最后(或最后几个)动作来预测,而RNN原则上允许发现更长期的语义。一般而言,基于MC的方法在模型简约性至关重要的极稀疏数据集中执行得最好,而RNN在较密集的数据集中执行得更好,因为较高的模型原创 2022-06-30 23:03:09 · 1488 阅读 · 0 评论 -
BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer阅读笔记
BERTRec (arxiv)一篇2019的文章,浅读一下从用户的历史行为中对其动态偏好进行建模,对于推荐系统来说是具有挑战性的,也是至关重要的。以前的方法采用顺序神经网络将用户的历史交互行为从左到右编码为隐性表征,以便进行推荐。尽管它们很有效,但我们认为这种从左到右的单向模型是次优的,因为其局限性包括:a)单向架构限制了用户行为序列中隐藏表征的能力;b)它们通常假设一个严格的顺序,这并不总是实用的。为了解决这些局限性,我们提出了一个名为BERT4Rec的顺序推荐模型,它采用了深度双向自我关注来模拟用户行原创 2022-06-28 20:00:25 · 406 阅读 · 0 评论 -
AttRec: Next Item Recommendation with Self-Attention阅读笔记
Next Item Recommendation with Self-Attention (arxiv.org)这篇文章是18年的一篇文章,作为常用的baseline,大概阅读一下。本文提出了一种新的序列感知推荐模型。该模型利用自注意力机制从用户的历史交互中推断出项与项之间的关系。通过自适应,它能够估计用户交互轨迹中每一项的相对权重,从而学习用户瞬时兴趣的表示。模型最终在一个度量学习框架中进行训练,同时考虑了短期和长期意图。在不同领域的大量数据集上的实验表明,我们的方法比最先进的方法有很大的优势。模型由两部原创 2022-06-27 17:24:18 · 407 阅读 · 0 评论 -
Kaggle-泰坦尼克号-机器学习/数据挖掘学习笔记
本文是学习数据挖掘和机器学习模型的运用的一点笔记。原创 2022-06-20 22:12:45 · 766 阅读 · 0 评论 -
一个例子解读推荐系统思路的区别【基于人口统计、基于内容、基于项目和用户的协同过滤推荐算法】
1. 非协同过滤1.1 基于人口统计信息的推荐1.2 基于物品内容的推荐2. 协同过滤2.1 基于用户的协同过滤2.2 基于物品的协同过滤3. 不同推荐系统算法的比较原创 2022-02-15 15:08:12 · 1018 阅读 · 0 评论 -
算法课一些笔记
1.递归和分治1.1 分治法基本思想将一个规模为n的问题分解为k个规模较小的问题,这些子问题相互独立且与原问题相同。递归地解决这些子问题,然后将各子问题的解合并得到原问题的解。*平衡子问题:尽量使子问题规模相同。1.2 递归方程T(n)={O(1)n=1kT(n/m)+f(n)n>1T(n)=\left\{\begin{aligned}& O(1) &n=1\\& kT(n/m)+f(n) & n>1\end{aligned}\right.T原创 2021-11-22 17:43:13 · 129 阅读 · 0 评论 -
推荐系统的评价指标笔记(NDCG、MAP、AUC、HR、MRR)
NDCGNormalized Discounted Cummulative Gain累积增益CG,CG表示每个推荐结果相关性的分数的累加,CGk=∑i=1kr(i)CG_k=\sum_{i=1}^kr(i)CGk=i=1∑kr(i)其中relirel_ireli是位置iii的推荐结果的相关性,kkk是推荐列表的大小.如果我们考虑到位置对推荐的影响,比如,相关性高的应该尽量排在推荐列表的前面。这里引入DCG,考虑位置的影响因素:DCGk=∑i=1kr(i)log2(i+1)DCG_k=\s原创 2021-09-27 16:18:04 · 4512 阅读 · 0 评论 -
论文实验部分的撰写
4 ExperimentsIn this section, we present the experiment results to answer the following questions.1) xxxx2) xxxx3) xxxx4.1 Parameter settingChoose one or two parameters.Observe the trend of the evaluation index with the change of the parameters throu原创 2021-09-26 16:05:47 · 336 阅读 · 0 评论 -
推荐系统评价指标综述笔记
目录How good your recommender system is? 阅读笔记1.Utility1.1 Error metrics1.2 Precision and Recall1.3 Ranking score2.NoveltyHow good your recommender system is? 阅读笔记介绍推荐系统的评价指标从历史上看,评估可以在在线和离线的实验中进行。在线实验包括发布推荐后询问用户评价,在线实验可以从用户那里得到精确的结果,但是花费比较多(costly). 所以研究者原创 2021-09-22 22:46:20 · 1501 阅读 · 0 评论 -
Latex符号、公式
转义字符$ # % & ~ _ ^ \ { }并集:\cup ∪\cup∪集合减 \backslash \\backslash\积分 \int_{-N}^{N} e^x, dx ∫−NNex dx\int_{-N}^{N} e^x\, dx∫−NNexdx原创 2021-05-19 01:26:12 · 1924 阅读 · 0 评论