GPU训练方法一
.cuda
可以使用GPU训练的内容:
- 数据(输入、标签)
- 损失函数
- 网络模型
GPU训练方法二
.to(device)
# 使用cpu训练
device = torch.device("cpu")
#使用GPU训练
torch.device("cuda")
# 指定训练的GPU
torch.device("cuda:0")
model.eval() # 将模型转化为测试类型
model.train() # 将模型转化为训练模型
import torch.optim.optimizer
import torchvision
# 准备数据集
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
import time
train_data = torchvision.datasets.CIFAR10(r"C:\Users\123\Desktop\python4.7\test03\data", train=True, download=True,
transform=torchvision.transforms.ToTensor())
test_data = torchvision.datasets.CIFAR10(r"C:\Users\123\Desktop\python4.7\test03\data", train=False, download=True,
transform=torchvision.transforms.ToTensor())
# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10, 训练数据集的长度为:10
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))
# 利用DataLoader来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 创建网络模型
class LR(nn.Module):
def __init__(self):
super(LR, self).__init__()
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
lrp = LR()
if torch.cuda.is_available():
lrp = lrp.cuda()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
loss_fn = loss_fn.cuda()
# 优化器
Learning_rate = 0.01
optimizer = torch.optim.SGD(lrp.parameters(), lr=Learning_rate)
# 设置训练网络的参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 记录训练轮数
epoch = 10
# 添加tensorboard
writer = SummaryWriter("./logs_train")
# 记录当前时间
start_time = time.time()
for i in range(epoch):
print("————————第{}轮训练开始————————".format(i+1))
# 训练步骤开始
for data in train_dataloader:
imgs, targets = data
imgs = imgs.cuda()
if torch.cuda.is_available():
targets = targets.cuda()
imgs = imgs.cuda()
outputs = lrp(imgs)
# 计算预测损失
loss = loss_fn(outputs, targets)
# 优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step = total_train_step + 1
# 训练步骤不必每次打印
if total_train_step % 100 == 0:
# 记录结束时间
end_time = time.time()
print(end_time - start_time)
print("训练次数:{},loss:{}".format(total_train_step, loss.item()))
# tensorboard
writer.add_scalar("train_loss", loss.item(), total_test_step)
# 使用测试来判断网络是否训练好了
total_test_loss = 0
# 整体预测的准确度
total_acc = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
if torch.cuda.is_available():
targets = targets.cuda()
imgs = imgs.cuda()
outputs = lrp(imgs)
loss = loss_fn(outputs, targets)
total_test_loss = total_test_loss + loss.item()
acc = (outputs.argmax(1) == targets).sum()
total_acc = total_acc + acc
print("整体测试集上的Loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_acc/test_data_size))
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_acc", total_acc/test_data_size, total_test_step)
total_test_step = total_test_step + 1
# 保存模型
torch.save(lrp, "lrp_{}.pth".format(i))
print("模型已保存")
writer.close()
# GPU训练方式二
import torch.optim.optimizer
import torchvision
# 准备数据集
from torch import nn
from torch.nn import Sequential, Conv2d, MaxPool2d, Flatten, Linear
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader
import time
# 定义训练的设备
device = torch.device("cuda:0")
# 常用方式
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
train_data = torchvision.datasets.CIFAR10(r"C:\Users\123\Desktop\python4.7\test03\data", train=True, download=True,
transform=torchvision.transforms.ToTensor())
test_data = torchvision.datasets.CIFAR10(r"C:\Users\123\Desktop\python4.7\test03\data", train=False, download=True,
transform=torchvision.transforms.ToTensor())
# length 长度
train_data_size = len(train_data)
test_data_size = len(test_data)
# 如果train_data_size=10, 训练数据集的长度为:10
print("训练数据集的长度:{}".format(train_data_size))
print("测试数据集的长度:{}".format(test_data_size))
# 利用DataLoader来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 创建网络模型
class LR(nn.Module):
def __init__(self):
super(LR, self).__init__()
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
lrp = LR()
lrp = lrp.to(device)
# 损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device)
# 优化器
Learning_rate = 0.01
optimizer = torch.optim.SGD(lrp.parameters(), lr=Learning_rate)
# 设置训练网络的参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 记录训练轮数
epoch = 10
# 添加tensorboard
writer = SummaryWriter("./logs_train")
# 记录当前时间
start_time = time.time()
for i in range(epoch):
print("————————第{}轮训练开始————————".format(i+1))
# 训练步骤开始
for data in train_dataloader:
imgs, targets = data
imgs = imgs.to(device)
targets = targets.to(device)
outputs = lrp(imgs)
# 计算预测损失
loss = loss_fn(outputs, targets)
# 优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step = total_train_step + 1
# 训练步骤不必每次打印
if total_train_step % 100 == 0:
# 记录结束时间
end_time = time.time()
print(end_time - start_time)
print("训练次数:{},loss:{}".format(total_train_step, loss.item()))
# tensorboard
writer.add_scalar("train_loss", loss.item(), total_test_step)
# 使用测试来判断网络是否训练好了
total_test_loss = 0
# 整体预测的准确度
total_acc = 0
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
imgs = imgs.to(device)
targets = targets.to(device)
outputs = lrp(imgs)
loss = loss_fn(outputs, targets)
total_test_loss = total_test_loss + loss.item()
acc = (outputs.argmax(1) == targets).sum()
total_acc = total_acc + acc
print("整体测试集上的Loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_acc/test_data_size))
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_acc", total_acc/test_data_size, total_test_step)
total_test_step = total_test_step + 1
# 保存模型
torch.save(lrp, "lrp_{}.pth".format(i))
print("模型已保存")
writer.close()