文章目录
一、为什么是二维随机变量
还记得我们在 C h a p t e r 2 Chapter 2 Chapter2 里面讨论的都是一维随机变量嘛,但是假如我们举一个例子:
- 比如我们要统计人群的身高分布,那容易啊,直接统计一个变量——身高 X 即可
- 但是,如果我们要统计的是人群的身材,那你不可能只用身高来衡量,我们需要两个变量——身高 X 和体重 Y。因此,这就是二维随机变量的引入。
我们一般使用 (X, Y)来表示。可以说是一个向量。
二、二维随机变量的分布函数
我们先来看看定义: F ( x , y ) = P { X ≤ x , Y ≤ y } F(x, y) = P\{X≤x, Y≤y\} F(x,y)=P{X≤x,Y≤y}
它的意思是由 X ≤ x , Y ≤ y X ≤x, Y ≤y X≤x,Y≤y 所构成的蓝色区域所对应的立体密度函数的体积!!
这句话怎么理解呢?这得回到一维去,因为我们在一维随机变量里面, F ( x ) = P { X ≤ x } F(x) = P\{X≤x\} F(x)=P{X≤x}表示的是 X ≤ x X≤x X≤x 所对应的平面密度函数的面积。那么扩展到二维,它的密度函数是 f ( x , y ) f(x,y) f(x,y) ,是一个立体的函数,那么对应的自然就是体积了。

2.1 二维随机变量分布函数的性质
【1】
0
≤
F
(
x
,
y
)
≤
1
0 ≤ F(x, y) ≤1
0≤F(x,y)≤1这个好理解,概率一定小于等于1 .
【2】
F
(
x
,
y
)
F(x, y)
F(x,y) 是关于 x 或 y 的不减函数
【3】
F
(
−
∞
,
y
)
=
0
;
F
(
x
,
−
∞
)
=
0
;
F
(
−
∞
,
−
∞
)
=
0
,
F
(
+
∞
,
+
∞
)
=
1
F(-∞, y) = 0; F(x, -∞) = 0; F(-∞, -∞) = 0, F(+∞, +∞) = 1
F(−∞,y)=0;F(x,−∞)=0;F(−∞,−∞)=0,F(+∞,+∞)=1
如果我们把二维随机变量的概率密度函数想象成立体草帽,那么在任何一个变量是 -∞ 的时候,还没能切到草帽,所以体积一定是0.
【4】
F
(
x
,
y
)
F(x, y)
F(x,y) 分别关于 x, y右连续
【5】
P
{
x
1
<
X
≤
x
2
,
y
1
<
Y
≤
y
2
}
=
F
(
x
2
,
y
2
)
−
F
(
x
2
,
y
1
)
−
F
(
x
1
,
y
2
)
+
F
(
x
1
,
y
1
)
P\{x_1 < X ≤ x_2, y_1 <Y ≤ y_2\} = F(x_2, y_2) - F(x_2, y_1) - F(x_1, y_2) + F(x_1, y_1)
P{x1<X≤x2,y1<Y≤y2}=F(x2,y2)−F(x2,y1)−F(x1,y2)+F(x1,y1)
2.2 二维随机变量的边缘分布函数
上面我们讲过的:
F
(
x
,
y
)
=
P
{
X
≤
x
,
Y
≤
y
}
F(x, y) = P\{X≤x, Y≤y\}
F(x,y)=P{X≤x,Y≤y} 它叫做联合分布函数。下面我们来看看边缘分布函数,其实也好理解:
F
X
(
x
)
=
P
{
X
≤
x
,
Y
<
+
∞
}
F_X(x) = P\{X ≤ x, Y< +∞\}
FX(x)=P{X≤x,Y<+∞} 这叫做 X 的边缘分布函数,它的意思是令 X 小于等于 x, y 爱咋地咋地,不限制。同理
F
Y
(
y
)
=
P
{
X
<
+
∞
,
Y
<
y
}
F_Y(y) = P\{X < +∞, Y < y\}
FY(y)=P{X<+∞,Y<y}, 这叫做 Y 的边缘分布函数。
三、二维离散型随机变量的联合分布和边缘分布求法
这一节只需要一个例子就可以解释明白:我们以下面的表为例:
X\Y | 1 | 2 | 3 |
---|---|---|---|
1 | 0 | 1 2 \frac{1}{2} 21 | 1 8 \frac{1}{8} 81 |
2 | 1 8 \frac{1}{8} 81 | 1 8 \frac{1}{8} 81 | 1 8 \frac{1}{8} 81 |
这是一个二维离散型随机变量的联合分布表,里面具体的概率值就用我们之前学过的办法计算。
下面看看如何计算联合分布函数:
假设要计算:
F
(
1.2
,
1
)
F(1.2, 1)
F(1.2,1),那么就是:
P
{
X
≤
1.2
,
Y
≤
1
)
P\{X ≤1.2, Y≤ 1)
P{X≤1.2,Y≤1),我们可以这样做:
F
(
1.2
,
1
)
=
0
F(1.2, 1) = 0
F(1.2,1)=0
如果计算
F
(
2.4
,
2.1
)
F(2.4, 2.1)
F(2.4,2.1),我们可以这样做:
F
(
2.4
,
2.1
)
=
0
+
1
2
+
1
8
+
1
8
=
3
4
F(2.4, 2.1) = 0+\frac{1}{2} + \frac{1}{8} + \frac{1}{8} = \frac{3}{4}
F(2.4,2.1)=0+21+81+81=43
其他情况类似。
那么,如何计算边缘分布呢?首先我们看看计算 X 的边缘分布:
我们把 每一个 X 所在的行分别相加,就可以得到 X 的边缘分布。如下表:
X | 1 | 2 |
---|---|---|
P | 5 8 \frac{5}{8} 85 | 3 8 \frac{3}{8} 83 |
Y 的边缘分布的计算类似。
最后提几个要点:
- 有了联合分布就可以唯一地确定边缘分布。
- 但是有了边缘分布并不能唯一地确定联合分布(除了 X, Y 独立的时候)
四、二维连续型随机变量的联合密度函数、分布函数和边缘分布
4.1 联合密度函数和联合分布函数
分布函数的定义还是一样的:
F
(
x
,
y
)
=
P
{
X
≤
x
,
Y
≤
y
}
F(x, y) = P\{X≤x, Y≤y\}
F(x,y)=P{X≤x,Y≤y}
它的意义我们在前面讨论过了,既然是体积,那么就会涉及到二重积分。我们先回顾一下二重积分的几何意义:
当 f ( x , y ) ≥ 0 f(x, y) ≥ 0 f(x,y)≥0 时, ∬ D f ( x , y ) d σ \iint_Df(x,y)dσ ∬Df(x,y)dσ 是以区域 D 为底, f ( x , y ) f(x,y) f(x,y) 为顶的曲顶柱体的体积。
因此,我们就可以通过二重积分计算分布函数:
F
(
x
,
y
)
=
∫
−
∞
x
∫
−
∞
y
f
(
s
,
t
)
d
s
d
t
F(x,y) = \int_{-∞}^{x}\int_{-∞}^{y}f(s,t)dsdt
F(x,y)=∫−∞x∫−∞yf(s,t)dsdt
下面我们给出几个性质:
【1】
f
(
x
,
y
)
>
0
f(x,y) >0
f(x,y)>0
【2】
∫
−
∞
+
∞
∫
−
∞
+
∞
f
(
s
,
t
)
d
s
d
t
=
1
\int_{-∞}^{+∞}\int_{-∞}^{+∞}f(s,t)dsdt = 1
∫−∞+∞∫−∞+∞f(s,t)dsdt=1
【3】
f
(
x
,
y
)
=
∂
2
F
(
x
,
y
)
∂
x
∂
y
f(x,y) = \frac{\partial^2F(x,y)}{\partial {x} \partial {y}}
f(x,y)=∂x∂y∂2F(x,y)(这时计算联合密度函数的好办法!)
【4】如果题目给出来一个区域
G
G
G,它是 X, Y 平面的一个区域。那么,我们有:
P
{
(
x
,
y
)
∈
G
}
=
∬
G
f
(
x
,
y
)
d
x
d
y
P\{(x, y)∈G\} = \iint_{G}f(x,y)dxdy
P{(x,y)∈G}=∬Gf(x,y)dxdy
它也就是把 G 区域沿着 Z 轴拉伸,和
f
(
x
,
y
)
f(x,y)
f(x,y) 包围起来的那一部分体积
4.2 边缘密度函数
我们先定义一下边缘分布函数: F X ( x ) = F ( x , + ∞ ) = ∫ − ∞ x ∫ − ∞ + ∞ f ( s , t ) d s d t F Y ( y ) = F ( + ∞ , y ) = ∫ − ∞ y ∫ − ∞ + ∞ f ( s , t ) d s d t F_X(x) = F(x, +∞) = \int_{-∞}^x\int_{-∞}^{+∞}f(s,t)dsdt\\ \quad\\ F_Y(y) = F(+∞, y) = \int_{-∞}^y\int_{-∞}^{+∞}f(s,t)dsdt FX(x)=F(x,+∞)=∫−∞x∫−∞+∞f(s,t)dsdtFY(y)=F(+∞,y)=∫−∞y∫−∞+∞f(s,t)dsdt
当然,通过联合分布函数
F
(
x
,
y
)
F(x,y)
F(x,y) 也可以计算处边缘分布:
F
X
(
x
)
=
lim
y
→
+
∞
F
(
x
,
y
)
F
Y
(
y
)
=
lim
x
→
+
∞
F
(
x
,
y
)
F_X(x) = \lim_{y\to +∞}F(x, y)\\ \quad\\ F_Y(y) = \lim_{x\to +∞}F(x,y)
FX(x)=y→+∞limF(x,y)FY(y)=x→+∞limF(x,y)
那么,如果要计算 X 的边缘密度函数,我们就对
F
X
(
x
)
F_X(x)
FX(x) 求导:
f
X
(
x
)
=
F
X
′
(
x
)
=
∫
−
∞
+
∞
f
(
x
,
y
)
d
y
f
Y
(
y
)
=
F
Y
′
(
y
)
=
∫
−
∞
+
∞
f
(
x
,
y
)
d
x
f_X(x) = F_X'(x) = \int_{-∞}^{+∞}f(x,y)dy\\ \quad\\ f_Y(y) = F_Y'(y) = \int_{-∞}^{+∞}f(x,y)dx
fX(x)=FX′(x)=∫−∞+∞f(x,y)dyfY(y)=FY′(y)=∫−∞+∞f(x,y)dx
简而言之,要计算
f
X
(
x
)
f_X(x)
fX(x),可以在无穷范围内
f
(
x
,
y
)
f(x,y)
f(x,y) 对
y
y
y 积分。要计算
f
Y
(
y
)
f_Y(y)
fY(y),可以在无穷范围内
f
(
x
,
y
)
f(x,y)
f(x,y) 对
x
x
x 积分。
当我们说到这儿的时候,其实给出一道题做,套公式写出来没有任何问题。但是,真正的意义你理解了吗?下面我们看一个例子,博主打算用公式法+画图理解法剖析边缘密度函数的意义:
已知(X, Y)在椭圆 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2} = 1 a2x2+b2y2=1 所围成的区域上服从均匀分布。其联合密度函数为: φ ( x , y ) = { 1 π a b x 2 a 2 + y 2 b 2 ≤ 1 0 e l s e φ(x,y) = \begin{cases} \frac{1}{πab}\quad \frac{x^2}{a^2}+\frac{y^2}{b^2} ≤1\\ 0\quad else\\ \end{cases} φ(x,y)={πab1a2x2+b2y2≤10else
求 X ,Y 的边缘密度函数 φ X ( x ) , φ Y ( y ) φ_X(x), φ_Y(y) φX(x),φY(y)
首先,抛开问题本身,我们一般假设概率密度函数 f ( x , y ) f(x,y) f(x,y) 就是一个草帽状函数,那么问一个问题:联合分布函数 F ( x , y ) F(x,y) F(x,y)的意义是什么?—— 根据定义思考一下: F ( x , y ) = P { X ≤ x , Y ≤ y } = ∫ − ∞ x ∫ − ∞ y f ( u , v ) d u d v F(x, y) = P\{X≤x, Y≤y\} = \int_{-∞}^x\int_{-∞}^yf(u, v)dudv F(x,y)=P{X≤x,Y≤y}=∫−∞x∫−∞yf(u,v)dudv。下面我们看一张图理解一下:

具体一个 F ( x 0 , y 0 ) F(x_0, y_0) F(x0,y0)的意义就是分别用 x = x 0 x = x_0 x=x0 和 y = y 0 y = y_0 y=y0 这两把刀,去切割草帽,里面那部分的体积!
那么,边缘密度函数呢?如果我们还是以 f X ( x 0 ) f_X(x_0) fX(x0)为例?

既然是 f X ( x 0 ) f_X(x_0) fX(x0) ,那么也就意味着只用 x = x 0 x = x_0 x=x0 这一把刀去切割草帽,我们发现,切割草帽的时候会得到一个切割线,如上图所示。那么 f X ( x 0 ) f_X(x_0) fX(x0) 的意义就是这个切割线与 y y y 轴所围成的面积!
那么,如果我们把这样的分析具体化到这道题目上,本题的分布密度函数如下图左图所示。那么一样的道理,如果考虑 f X ( x 0 ) f_X(x_0) fX(x0),就是只用 x = x 0 x = x_0 x=x0这一把刀去切割分布密度函数图,如果这把刀能够切割到函数体,那么自然就会产生一个切痕,所以就是切痕曲线与 y y y 轴所围成的面积!

很显然,我们发现:这个分布密度函数在中间那个椭圆区域才有值,其他地方都是0.
现在,我们首先计算 φ X ( x ) φ_X(x) φX(x),很自然地,我们发现,如果 x = x 0 x = x_0 x=x0 这把刀放的太前( x ≥ a x ≥a x≥a)或者太后( x ≤ − a x ≤ -a x≤−a)我们都无法切到这个函数体,自然就没有切痕。那么 φ X ( x ) φ_X(x) φX(x) 就会等于 0.即: φ X ( x ) = 0 i f ∣ x ∣ ≥ a φ_X(x) = 0\quad if\space |x| ≥ a φX(x)=0if ∣x∣≥a
下面考虑能切到的时候,即 ∣ x ∣ < a |x| < a ∣x∣<a,那么刀刃的线如上面左图加粗的地方,切割线也是一样的。然后我们就是要计算切痕与 y y y 轴所围成的面积(如上面的右图所示)
但是我们又发现,这个切痕也是在
y
y
y 处于一定范围的时候才有值,其他时候为0.
y
y
y 的范围我们可以通过椭圆的方程很容易求出来,就等于:
±
b
1
−
x
2
a
2
±b\sqrt{1-\frac{x^2}{a^2}}
±b1−a2x2
这个面积还不好求?就是一个矩形的面积罢了对吧!所以我们得到:
φ
X
(
x
)
=
1
π
a
b
2
b
1
−
x
2
a
2
=
2
π
a
1
−
x
2
a
2
i
f
∣
x
∣
<
a
φ_X(x) = \frac{1}{πab}2b\sqrt{1-\frac{x^2}{a^2}} =\frac{2}{πa}\sqrt{1-\frac{x^2}{a^2}} \quad if \space |x| < a
φX(x)=πab12b1−a2x2=πa21−a2x2if ∣x∣<a
φ Y ( y ) φ_Y(y) φY(y) 的理解方法完全类似。式子的意义理解了,带公式解题也有了底气哈哈!
关于计算边缘分布密度的注记
在计算边缘分布密度的时候,积分的区间仍然是一个大坑。这里,博主总结了一个避坑方法:
在给出的联合分布密度函数中,x ,y 的范围有了的时候,我们一定要把这个 x, y 范围所表示的区域画出来,只要把这个区域画出来了,我们在后面对 x 或者 y 积分的时候,它们各自的积分区间一目了然,就不会搞错了。