从今天开始,博主将和大家一起开始正式学习 4G,5G技术中的其中一座天王山:OFDM。博主也将尽可能用易于理解的语言将本人所掌握的知识表述出来,如有不当,欢迎大家在评论区斧正!
OFDM(正交 Orthogonal、频分复用 FDM)
OFDM顾名思义就是 两个关键点:什么是“正交”,什么是频分复用?我们这篇博客主要是搞清楚这两点,从而理解OFDM的特点。
在数学上,我们对于正交的感觉就是 “垂直”,而在通信人眼中,正交的含义就是 “混合的信号可以完全分离”,这就叫正交。举个例子:如果我们将油和水混合在一起,我们知道是可以通过静置或者加热等方法把水和油完全分离出来,因此我们说水和油是正交的。而如果将酱油和水混合,我们是无法再将它们分开了,因此这就不是正交的。
好的,了解了正交,下面我们来看看什么是频分复用 FDM:FDM就是将用于传输信道的总带宽划分成若干个子频带(或称子信道),每一个子信道传输1路信号 [1]。换句话说,就是对于一个信道,在同一时刻会有多种频率的信号同时工作。
回顾一下我们在《通信原理》中所学习到的一些调制方式:ASM, PSK, FSM, QAM等,它们都属于单载波工作。(尽管FSM会使用多种不同频率的高频载波,但是在某一个时刻,还是只能存在某一种载波,因此不属于多载波范畴)。
下面我们来看看 FDM 的发射框图(以三载波为例):
当然,FDM技术也会遇到这样的困扰:即如何避免多个高频载波之间的干扰?因为即使我们为三个高频载波设置了不同的频点,但是在经过数据调制之后,不同的载波还是会占据一定宽度的频谱,如果载波之间的间隔比较小,那么就有可能落入其他载波频谱的范围内,对接收造成影响。
缓解这个问题的方法是:可以在调制之后加上一个带通滤波器,将载波的频谱限制在一定的范围之内,只保留主频带上的能量。 但是,即使是使用了带通滤波器,在高频信号经过带通滤波之后,主频带之外还是会有一些能量的,这称为带外杂散。因此,我们还需要设置一个防护频带(guard band),作为减少相邻频带之间干扰的缓冲区。
下图展示了 FDM 的频谱示意图:
【1】在下图这种情况下,虽然我们设置了三个不同的频点,但是载波之间的距离过小,导致接收时无法对这三个频率成分的频谱完全分离。
【2】下图这种情况,为三个频带设置了一定宽度的防护频带,因此在接受时可以使用滤波器将三个成分完全分离。
【3】三个频带挨得最近的极限情况,此时理论上可以完全分离,但是实际工程中难以实现。
那么,从上面对 FDM 的分析中,我们可以得到下面两个重要的结论:
-
FDM 也是一种正交技术! 因为当设置了合适的保护频带之后,我们在接收端是可以使用滤波器将它们完全分离的,那么既然是有办法完全分离,那么就属于正交的定义。(即:FDM信号在时域上是混合的,但是在频域上确实分离的)
-
FDM 技术的频谱利用率是比较低的,因为这样的频率保护带占用了更多的频谱资源,当载波数量继续增加时,保护带对频谱资源的浪费就更加严重。
好的,回过头来我们看:我们刚刚说 FDM 是频分复用,且 FDM 技术也是正交的,那么不就是正交频分复用吗???那为什么还整出来一个 OFDM呢?其实玄机在于 OFDM的正交和 FDM的正交 是不一样的正交! 下面我们来看看 OFDM 的正交是什么样的:
首先我们回顾一下高数中的积分公式: ∫ 0 2 π c o s ( n x ) s i n ( m x ) d x = 0 ∫ 0 2 π c o s ( n x ) c o s ( m x ) d x = 0 ∫ 0 2 π c o s ( n x ) c o s ( n x ) d x = π ∫ 0 2 π s i n ( m x ) s i n ( m x ) d x = π \int_0^{2\pi} cos(nx)sin(mx)dx =0\\ \int_0^{2\pi} cos(nx)cos(mx)dx =0\\ \int_0^{2\pi} cos(nx)cos(nx)dx =\pi\\ \int_0^{2\pi} sin(mx)sin(mx)dx =\pi ∫02πcos(nx)sin(mx)dx=0∫02πcos(nx)cos(mx)dx=0∫02πcos(nx)cos(nx)dx=π∫02πsin(mx)sin(mx)dx=π
当时我们的高数课本中得出了这样的结论:
1,
c
o
s
x
,
s
i
n
x
,
c
o
s
(
2
x
)
,
s
i
n
(
2
x
)
,
⋯
,
c
o
s
(
n
x
)
,
s
i
n
(
n
x
)
cosx, sinx, cos(2x), sin(2x), \cdots, cos(nx), sin(nx)
cosx,sinx,cos(2x),sin(2x),⋯,cos(nx),sin(nx) 其中任意两个不同的函数的乘积在
[
0
,
2
π
]
[0, 2\pi]
[0,2π]区间上的积分均为0,即正交。它们组成了三角级数的函数系。 而在这个函数系里面相同的两个函数的乘积在
[
0
,
2
π
]
[0, 2\pi]
[0,2π]区间上的积分不为0.
那么换句话说,如果我们使用了 c o s ( n x ) cos(nx) cos(nx) 和 c o s ( m x ) cos(mx) cos(mx) 作为了多载波系统的两个载波,把它们在时域上混合,那么在接收的时候,我们如果要分理出 c o s ( n x ) cos(nx) cos(nx) 和 c o s ( m x ) cos(mx) cos(mx) ,只需要用 c o s ( n x ) cos(nx) cos(nx) 或者 c o s ( m x ) cos(mx) cos(mx) 和 c o s ( n x ) , c o s ( m x ) cos(nx),cos(mx) cos(nx),cos(mx)的混合信号相乘再积分,就可以分理出两种信号了。
不过这还不是最终OFDM的正交,我们的积分区间有时并不一定是 [ 0 , 2 π ] [0, 2\pi] [0,2π],准确来讲应该是在一个码元周期 T 内积分,要保证所选取的载波正交! 那么下面我们来看看载波频率应该如何选择,才能保证在一个码元周期内积分等于0:
我们假设所任意两个载波角频率分别是: ω 1 \omega_1 ω1和 ω 2 \omega_2 ω2,相应的载波就是: c o s ( ω 1 t ) cos(\omega_1t) cos(ω1t) 和 c o s ( ω 2 t ) cos(\omega_2t) cos(ω2t),设码元周期是 T 。不过考虑到实际工程中,各载波的初始相位可能不同,因此,我们给第一个载波加上一个初始相位 Φ Φ Φ,那么有: 0 = ∫ 0 T c o s ( ω 1 t + Φ ) c o s ( ω 2 t ) d t = ∫ 0 T ( c o s ( ω 1 t ) c o s Φ − s i n ( ω 1 t ) s i n Φ ) c o s ( ω 2 t ) d t = c o s Φ ∫ 0 T c o s ( ω 1 t ) c o s ( ω 2 t ) d t − s i n Φ ∫ 0 T s i n ( ω 1 t ) c o s ( ω 2 t ) d t = c o s Φ 2 ∫ 0 T [ c o s ( ω 1 t + ω 2 t ) + c o s ( ω 1 t − ω 2 t ) ] d t − s i n Φ 2 ∫ 0 T [ s i n ( ω 1 t + ω 2 t ) + s i n ( ω 1 t − ω 2 t ) ] d t = c o s Φ 2 ∫ 0 T c o s ( ω 1 + ω 2 ) t d t + c o s Φ 2 ∫ 0 T c o s ( ω 1 − ω 2 ) t d t − s i n Φ 2 ∫ 0 T s i n ( ω 1 + ω 2 ) t d t − s i n Φ 2 ∫ 0 T s i n ( ω 1 − ω 2 ) t d t = c o s Φ 2 [ s i n ( ω 1 + ω 2 ) T ω 1 + ω 2 + s i n ( ω 1 − ω 2 ) T ω 1 − ω 2 ] + s i n Φ 2 [ c o s ( ω 1 + ω 2 ) T − 1 ω 1 + ω 2 + c o s ( ω 1 − ω 2 ) T − 1 ω 1 − ω 2 ] = 0 \begin{aligned} 0&=\int_{0}^Tcos(\omega_1t+Φ)cos(\omega_2t)dt\\ &=\int_0^T(cos(\omega_1t)cosΦ-sin(\omega_1t)sinΦ)cos(\omega_2t)dt\\ &=cosΦ\int_0^Tcos(\omega_1t)cos(\omega_2t)dt - sinΦ\int_0^Tsin(\omega_1t)cos(\omega_2t)dt\\\\ &=\frac{cosΦ}{2}\int_0^T[cos(\omega_1t+\omega_2t)+cos(\omega_1t-\omega_2t)]dt - \frac{sinΦ}{2}\int_0^T[sin(\omega_1t+\omega_2t)+sin(\omega_1t-\omega_2t)]dt\\ &=\frac{cosΦ}{2}\int_0^Tcos(\omega_1+\omega_2)t dt+\frac{cosΦ}{2}\int_0^Tcos(\omega_1-\omega_2)t dt- \frac{sinΦ}{2}\int_0^Tsin(\omega_1+\omega_2)t dt-\frac{sinΦ}{2}\int_0^Tsin(\omega_1-\omega_2)t dt\\ &=\frac{cosΦ}{2}[\frac{sin(\omega_1+\omega_2)T}{\omega_1+\omega_2}+\frac{sin(\omega_1-\omega_2)T}{\omega_1-\omega_2}]+\frac{sinΦ}{2}[\frac{cos(\omega_1+\omega_2)T-1}{\omega_1+\omega_2}+\frac{cos(\omega_1-\omega_2)T-1}{\omega_1-\omega_2}]=0 \end{aligned} 0=∫0Tcos(ω1t+Φ)cos(ω2t)dt=∫0T(cos(ω1t)cosΦ−sin(ω1t)sinΦ)cos(ω2t)dt=cosΦ∫0Tcos(ω1t)cos(ω2t)dt−sinΦ∫0Tsin(ω1t)cos(ω2t)dt=2cosΦ∫0T[cos(ω1t+ω2t)+cos(ω1t−ω2t)]dt−2sinΦ∫0T[sin(ω1t+ω2t)+sin(ω1t−ω2t)]dt=2cosΦ∫0Tcos(ω1+ω2)tdt+2cosΦ∫0Tcos(ω1−ω2)tdt−2sinΦ∫0Tsin(ω1+ω2)tdt−2sinΦ∫0Tsin(ω1−ω2)tdt=2cosΦ[ω1+ω2sin(ω1+ω2)T+ω1−ω2sin(ω1−ω2)T]+2sinΦ[ω1+ω2cos(ω1+ω2)T−1+ω1−ω2cos(ω1−ω2)T−1]=0
而实际情况中, ω 1 + ω 2 > > 1 \omega_1+\omega_2>>1 ω1+ω2>>1,因此上式中 s i n ( ω 1 + ω 2 ) T ω 1 + ω 2 → 0 、 c o s ( ω 1 + ω 2 ) T − 1 ω 1 + ω 2 → 0 \frac{sin(\omega_1+\omega_2)T}{\omega_1+\omega_2} \to 0、\frac{cos(\omega_1+\omega_2)T-1}{\omega_1+\omega_2} \to 0 ω1+ω2sin(ω1+ω2)T→0、ω1+ω2cos(ω1+ω2)T−1→0
这两项我们就可以不用考虑,因此最终要使得整个式子为0,我们就要求: s i n ( ω 1 − ω 2 ) T ω 1 − ω 2 = 0 c o s ( ω 1 − ω 2 ) T − 1 ω 1 − ω 2 = 0 \frac{sin(\omega_1-\omega_2)T}{\omega_1-\omega_2} = 0\\ \space\\ \frac{cos(\omega_1-\omega_2)T-1}{\omega_1-\omega_2} = 0 ω1−ω2sin(ω1−ω2)T=0 ω1−ω2cos(ω1−ω2)T−1=0
因此,我们可以得到两组方程:
{ ( ω 1 − ω 2 ) T = k π ( ω 1 − ω 2 ) T = 2 k π \begin{cases} (\omega_1-\omega_2)T = k\pi\\ (\omega_1-\omega_2)T = 2k\pi \end{cases} {(ω1−ω2)T=kπ(ω1−ω2)T=2kπ
其中,k为整数。我们可以发现方程1 是属于方程2的,因此我们可以得到结论:欲使两个任意初相位的载波在一个码元周期内的乘积的积分等于0,最小的频率间隔应该是: m i n △ ω = m i n ∣ ω 1 − ω 2 ∣ = 2 k π T , k 为 正 整 数 min△\omega = min|\omega_1-\omega_2| = \frac{2k\pi}{T}, k为正整数 min△ω=min∣ω1−ω2∣=T2kπ,k为正整数
特别的,如果载波的初相位均为0,那么最小的频率间隔就变为: k π T \frac{k\pi}{T} Tkπ。
而在OFDM系统中,由于QAM,PSK等调制方式的使用,使得每一个子载波的相位不可能一致,因此在OFDM系统中,对于子载波频率间隔的要求是: m i n △ ω = m i n ∣ ω 1 − ω 2 ∣ = 2 k π T , k 为 正 整 数 min△\omega = min|\omega_1-\omega_2| = \frac{2k\pi}{T}, k为正整数 min△ω=min∣ω1−ω2∣=T2kπ,k为正整数
综上所述,要想使得载波之间正交,我们必须要满足下面的所有条件:
1. 载波是正弦波或余弦波
2. 积分区间必须是基波的完整周期
3. 子载波的频率是基波频率的整数倍
4. 在基波的完整周期内,子载波的振幅要保持不变
下面我们来详细分析一这四种条件:
【条件一】:大家都比较熟悉了,就不再展开
【条件二】:条件里面的“积分区间”,就是我们上面所提到的码元周期 T。那么 “积分区间必须是基波的完整周期” 这句话也告诉我们一件事情:当码元周期确定时,基波的最小频率也就随之确定,即为:
f
m
i
n
=
1
/
T
f_{min} = 1/T
fmin=1/T。
【条件三】:那么根据我们上面数学推导得到的结论:OFDM系统载波间最小频率间隔为:
m
i
n
△
f
=
k
/
T
min△f=k/T
min△f=k/T,其中 k 为正整数。
【条件四】:条件四说明的一件事情是:无论子载波的频率是多大,每一个子载波在基波的完整周期内只能传送一个调制符号,即其符号速率等于基波的频率,并不取决于子载波频率。
我们举一个例子:如果已知码元周期是 T = 1s,那么就可以知道基波频率最小可以取到: f 0 = 1 H z f_0=1Hz f0=1Hz,因此子载波可以选取的频率就是 f = 1 , 2 , 3 , 4 , ⋯ , k H z f = 1,2,3,4,\cdots,kHz f=1,2,3,4,⋯,kHz
既然我们现在已经知道 OFDM 是多载波工作的,那么在OFDM系统中,我们就可以对每一个载波分别独立地进行调制(例如 QAM,PSK等) 而我们在《通信原理》中也知道,无论是 PSK调制还是 QAM调制,本质上我们获得的调制信号都可以看作是分别调制
c
o
s
(
ω
c
t
)
cos(\omega_ct)
cos(ωct)和
s
i
n
(
ω
c
t
)
sin(\omega_ct)
sin(ωct)。因此,OFDM的子载波其实包含正弦和余弦两个载波。例如:子载波1应该是
{
c
o
s
(
π
t
)
,
s
i
n
(
π
t
)
}
\{cos(\pi t), sin(\pi t)\}
{cos(πt),sin(πt)};子载波2是:
{
c
o
s
(
2
π
t
)
,
s
i
n
(
2
π
t
)
}
\{cos(2\pi t), sin(2\pi t)\}
{cos(2πt),sin(2πt)},诸如此类。那么,如果对子载波1进行 QAM 调制,也就等价于分别调制
c
o
s
(
π
t
)
,
s
i
n
(
π
t
)
cos(\pi t), sin(\pi t)
cos(πt),sin(πt)。 如下图所示:
其中,上图对于第一路数据的QAM调制,那就是和之前一样,把第一路数据进行串并变换、星座图映射,得到 I, Q两路数据分别调制 cos 和 sin。
目前我们只是从数学的角度证明了子载波之间的正交性,那么OFDM信号在频域上是怎么样的呢?在下一篇博文中我们将会继续延续今天的话题探讨OFDM的频谱特性,那时我们将会对 “正交” 有更加清晰的理解!