pytorch中 torch.nn的介绍

pytorch中 torch.nn的介绍

一、torch.nn是什么?
torch.nn是pytorch中自带的一个函数库,里面包含了神经网络中使用的一些常用函数,如具有可学习参数的nn.Conv2d(),nn.Linear()和不具有可学习的参数(如ReLU,pool,DropOut等)(后面这几个是在nn.functional中),这些函数可以放在构造函数中,也可以不放。

二、torch.nn的应用。
通常引入的时候写成:
import torch.nn as nn
import torch.nn.functional as F

这里我们把函数写在了构造函数中:

class ConvNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 10, 5) # 输入通道数1,输出通道数10,核的大小5
        self.conv2 = nn.Conv2d(10, 20, 3) # 输入通道数10,输出通道数20,核的大小3
        # 下面的全连接层Linear的第一个参数指输入通道数,第二个参数指输出通道数
        self.fc1 = nn.Linear(20*10*10, 500) # 输入通道数是2000,输出通道数是500
        self.fc2 = nn.Linear(500, 10) # 输入通道数是500,输出通道数是10,即10分类
    def forward(self,x):
        in_size = x.size(0) 
        out = self.conv1(x) 
        out = F.relu(out) 
        out = F.max_pool2d(out, 2, 2)
        out = self.conv2(out) 
        out = F.relu(out) 
        out = out.view(in_size, -1) 
        out = self.fc1(out) 
        out = F.relu(out) 
        out = self.fc2(out) 
        out = F.log_softmax(out, dim=1) 
        return out
PyTorch是一个基于Python的科学计算库,主要针对深度学习任务。在PyTorch中,torch.nn是一个用于构建神经网络模型的模块。 torch.nn模块提供了一系列神经网络层和函数,方便用户构建自定义的神经网络。用户可以通过继承torch.nn.Module类来定义自己的神经网络模型。torch.nn模块中常用的类包括各种层(例如全连接层、卷积层、池化层和循环层等)、非线性激活函数和损失函数等。 在使用torch.nn模块构建神经网络时,用户需要实现模型的前向传播函数forward()。该函数定义了输入数据在神经网络中的流动方式,即通过层和函数的组合计算输出。在forward()函数中,用户可以使用已定义的层和函数进行计算,也可以实现自定义的操作。 torch.nn模块中的另一个重要概念是参数(parameter)。参数是模型中需要学习的变量,例如网络层的权重和偏置项。用户可以通过在模型中定义torch.nn.Parameter对象来创建参数,并在forward()函数中进行使用。 除了torch.nn模块外,PyTorch还提供了其他的工具和模块来辅助神经网络的训练和优化过程。例如torch.optim模块包含了各种优化算法,如随机梯度下降(SGD)、Adam等,用于更新模型中的参数。torch.utils.data模块提供了数据处理和加载的工具,方便用户使用自己的数据训练模型。 总之,torch.nn模块是PyTorch中用于构建神经网络模型的重要组成部分。通过使用torch.nn的各种类和函数,用户可以方便地创建自己想要的神经网络结构,并利用PyTorch强大的计算能力和优化算法来训练和优化模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值