java数据结构 第11章--树结构实际应用01 推排序

11.1 堆排序

11.1.1 堆排序基本介绍

1.堆的时间复杂度

堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复 杂度均为O(nlogn),它也是不稳定排序

2.堆的定义

堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆, 注意: 没有

要求结点的左孩子的值和右孩子的值的大小关系。 每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆

3. 大顶堆举例说明

img

4. 小顶堆举例说明

img

5. 使用场景

一般升序采用大顶堆,降序采用小顶堆

11.1.2 堆排序基本思想

堆排序的基本思想是:
  1. 将待排序序列构造成一个大顶堆

  2. 此时,整个序列的最大值就是堆顶的根节点。

  3. 将其与末尾元素进行交换,此时末尾就为最大值。

  4. 然后将剩余n-1 个元素重新构造成一个堆,这样会得到n 个元素的次小值。如此反复执行,便能得到一个有序

序列了。

可以看到在构建大顶堆的过程中,元素的个数逐渐减少,最后就得到一个有序序列了.

11.1.3 堆排序步骤图解

1.说明 要求

给你一个数组{4,6,8,5,9} , 要求使用堆排序法,将数组升序排序。

2.步骤一:构造初始堆

将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。 原始的数组[4, 6, 8, 5, 9]

  1. .假设给定无序序列结构如下

img

  1. .此时我们从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点

arr.length/2-1=5/2-1=1,也就是下面的6 结点),从左至右,从下至上进行调整。

  1. .

img

  1. .找到第二个非叶节点4,由于[4,9,8]中9 元素最大,4 和9 交换。

img

  1. 这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6 最大,交换4 和6。 此时,我们就将一个无序序列构造成了一个大顶堆。

img

此时,我们就将一个无序序列构造成了一个大顶堆。

3.步骤二:将堆顶元素与末尾元素进行交换,使末尾元素最大。

然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。

  1. .将堆顶元素9 和末尾元素4 进行交换

img

  1. .重新调整结构,使其继续满足堆定义

img

  1. .再将堆顶元素8 与末尾元素5 进行交换,得到第二大元素8.

img

  1. 后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序

img

4.再简单总结下堆排序的基本思路:

1).将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;

2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;

3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,

直到整个序列有序。

11.1.4 堆排序代码实现

1.要求:

给你一个数组{4,6,8,5,9} , 要求使用堆排序法,将数组升序排序。

2.说明:
  1. 堆排序不是很好理解,老师通过Debug 帮助大家理解堆排序

  2. 堆排序的速度非常快,在我的机器上8 百万数据3 秒左右。O(nlogn)

3.代码实现

思路:

img

package tree;

import java.text.SimpleDateFormat;
import java.util.Arrays;
import java.util.Date;

public class HeapSort {
    public static void main(String[] args) {
        //要求将数组进行升序排序
        //int arr[] = {4, 6, 8, 5, 9};
        // 创建要给80000 个的随机的数组
        int[] arr = new int[8000000];
        for (int i = 0; i < 8000000; i++) {
            arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
        }
        System.out.println("排序前");
        Date data1 = new Date();
        SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
        String date1Str = simpleDateFormat.format(data1);
        System.out.println("排序前的时间是=" + date1Str);
        heapSort(arr);
        Date data2 = new Date();
        String date2Str = simpleDateFormat.format(data2);
        System.out.println("排序前的时间是=" + date2Str);
        //System.out.println("排序后=" + Arrays.toString(arr));
    }

    //编写一个堆排序的方法
    public static void heapSort(int arr[]) {
        int temp = 0;
        System.out.println("堆排序!!");
        // //分步完成
        // adjustHeap(arr, 1, arr.length);
        // System.out.println("第一次" + Arrays.toString(arr)); // 4, 9, 8, 5, 6
        //
        // adjustHeap(arr, 0, arr.length);
        // System.out.println("第2 次" + Arrays.toString(arr)); // 9,6,8,5,4
        //完成我们最终代码
        //将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
        for (int i = arr.length / 2 - 1; i >= 0; i--) {
            adjustHeap(arr, i, arr.length);
        }
        /*
        * 2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
        3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换
        步骤,直到整个序列有序。
        */
        for (int j = arr.length - 1; j > 0; j--) {
            //交换
            temp = arr[j];
            arr[j] = arr[0];
            arr[0] = temp;
            adjustHeap(arr, 0, j);
        }
        //System.out.println("数组=" + Arrays.toString(arr));
    }
        //将一个数组(二叉树), 调整成一个大顶堆

    /**
     * 功能: 完成将以i 对应的非叶子结点的树调整成大顶堆
     * 举例int arr[] = {4, 6, 8, 5, 9}; => i = 1 => adjustHeap => 得到{4, 9, 8, 5, 6}
     * 如果我们再次调用adjustHeap 传入的是i = 0 => 得到{4, 9, 8, 5, 6} => {9,6,8,5, 4}
     *
     * @param arr    待调整的数组
     * @param i      表示非叶子结点在数组中索引
     * @param lenght 表示对多少个元素继续调整, length 是在逐渐的减少
     */
    public static void adjustHeap(int arr[], int i, int lenght) {
        int temp = arr[i];//先取出当前元素的值,保存在临时变量
        //开始调整
        //说明
        //1. k = i * 2 + 1 k 是i 结点的左子结点
        for (int k = i * 2 + 1; k < lenght; k = k * 2 + 1) {
            if (k + 1 < lenght && arr[k] < arr[k + 1]) { //说明左子结点的值小于右子结点的值
                k++; // k 指向右子结点
            }
            if (arr[k] > temp) { //如果子结点大于父结点
                arr[i] = arr[k]; //把较大的值赋给当前结点
                i = k; //!!! i 指向k,继续循环比较
            } else {
                break;//!
            }
        }
        //当for 循环结束后,我们已经将以i 为父结点的树的最大值,放在了最顶(局部)
        arr[i] = temp;//将temp 值放到调整后的位置
    }
}
4.运行结果
堆排序!!
排序后={4,5,6,8,9}
5. 效率测试(800w 3s)
//测试速度
排序前
排序前的时间是=2021-04-17 15:33:48
堆排序!!
排序前的时间是=2021-04-17 15:33:51

Process finished with exit code 0
其他备注

1.排序算法之 堆排序 及其时间复杂度和空间复杂度

【学习笔记】

java数据结构 第1章-内容框架介绍
java数据结构 第2章-数据结构和算法概述
java数据结构 第3章-稀疏数组和队列
java数据结构 第4章-链表(单链表)
java数据结构 第4章-链表(双向链表)
java数据结构 第5章–栈
java数据结构 第6章–递归
java数据结构 第7章–排序算法01
java数据结构 第7章–排序算法02-冒泡排序
java数据结构 第7章–排序算法03-选择排序
java数据结构 第7章–排序算法04-插入排序
java数据结构 第7章–排序算法05-希尔排序
java数据结构 第7章–排序算法06-快速排序
java数据结构 第7章–排序算法07-归并排序
java数据结构 第7章–排序算法08-基数排序
java数据结构 第7章–排序算法09-常用排序算法总结和对比!
java数据结构 第8章–查找算法
java数据结构 第9章–哈希表
java数据结构 第10章–树结构的基础部分01
java数据结构 第10章树–结构的基础部分02
持续更新

【学习资料】
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是我,Zack

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值