论文阅读-可控NLG

GSum: A General Framework for Guided Neural AbstractiveSummarization

Abstract

abstractive summarization模型灵活,可以生成连贯的摘要,但是有时unfaithful并且很难去控制。尽管之前的工作尝试提供不同类型的guidance来控制输出并增加faithfulness,目前仍不清楚这些策略之间如何互相对比。本文我们提出了一个通用可扩展的摘要框架:GSum,它可以采用不同类型的外部guidance作为输入,我们采用几种不同变体实施了实验。经验结果证明了模型有效,当使用关键句作为guidance时,模型在4个流行的摘要数据集上达到了sota的rouge指标。除此之外,我们展现了我们的模型可以生成更faithful的摘要,并展示了不同类型的guidance如何生成质量上不同的摘要,从而为模型提供了一定程度的可控性。

Introduction

文本摘要技术可以分为extractive methods(Nallapati et al., 2017; Narayan et al., 2018b; Zhou et al., 2018)和abstractive methods(Rush et al., 2015; Chopra et al., 2016; Nallapati et al., 2016; Paulus et al., 2018),前者在输入文档中识别最合适的词或句子,然后拼接成摘要,后者自由的生成摘要,并可以生成新的词和句子。后者比前者更灵活,因此能生成连贯的摘要。但是,后者unconstrained的特性会导致一些问题。首先,它可能导致unfaithful摘要(Kry ́sci ́nski et al., 2019),包括factual errors以及hallucinated(幻觉)content。第二,难以控制摘要内容:很难去提前选择原始文档中可以被模型触及的方面。为了解决这些问题,我们为guided abstractive summarization提出了方法:该方法提供各种类型的guidance signals,一方面约束摘要,使得输出内容与原文档偏离变小;另一方面通过提供user-specified输入允许可控性。

对于guided abstractive summarization,过去有一些工作。例如,Kikuchi等人(2016)规定了摘要的长度,Li等人(2018)提供了带有关键字的模型,以防止模型丢失关键信息,Cao等人(2018)提出了从训练集中检索和引用相关摘要的模型。虽然这些方法在总结质量和可控性方面都有改进,但每种方法都侧重于一种特定类型的指导——尚不清楚哪种方法更好,以及它们是否相互补充。

在本文中,我们提出了一个通用可扩展的guided summarization框架,它可以采用不同类型的外部guidance作为输入。与最近大多数摘要模型类似,我们的模型基于encoder-decoders,用上下文预训练语言模型初始化,包括Bert,Bart。以这作为一个强大的起点,我们进行了修改,允许模型在生成输出时同时关注源文档和guidance signals。如图1所示,我们可以在测试期间为模型提供自动提取的或user-specified guidance,以约束模型的输出。在训练时,为了鼓励模型密切关注guidance,我们建议使用oracle来选择informative guidance signals——一个简单的修改,但被证明对于有效学习guided summarization模型是必不可少的。利用这个框架,我们研究了四种类型的guidance signals:(1)在源文档中突出显示的句子,(2)关键字,(3)以(主题、关系、对象)形式出现的显著关系元组,以及(4)检索到的摘要。

我们在6个流行的摘要benchmarks上评估我们的方法。我们最好的模型,使用关键的句子作为guidance,可以在6个数据集中的4个上实现sota性能。此外,我们对不同的guidance signals进行了深入分析,并证明了它们是相互补充的,有可能将它们的输出聚合在一起,获得进一步的改进。对结果的分析还表明,我们的引导模型可以生成更准确的摘要和更新颖的单词。最后,我们证明了我们可以通过提供user-specified guidance signals去控制输出,不同的signals可以导致不同的生成质量。

在这里插入图片描述

Background and Related Work

Neural abstractive summarization

abstractive summarization通常接受源文档x,它由多个句子 X 1 , X 2 , . . . X ∣ X ∣ X_1, X_2, ... X_{|X|} X1,X2,...XX组成,把它们输入encoder生成表征,并传递给decoder,decoder每次输出一个目标词y。训练中,模型参数 θ \theta θ更新以最大化训练语料库中输出的条件似然:
arg ⁡ max ⁡ θ ∑ < x i , y i > ∈ < X , Y > log ⁡ p ( y i ∣ x i ; θ ) \arg \max\limits_{\theta} \sum\limits_{<x^i,y^i> \in <\mathscr{X}, \mathscr{Y}>}\log p(y^i|x^i;\theta) argθmax<xi,yi><X,Y>logp(yixi;θ)
过去工作已经提出了一些技术来改进模型结构。例如,copy模型(Gu et al., 2016; See et al., 2017; Gehrmann et al., 2018) 允许将单词直接从输入复制到输出,coverage模型阻止模型生成重复的单词(See et al.,2017)。

Guidance

guidance可以被定义为除了源文档x外额外输入模型的一系列信号g:
arg ⁡ max ⁡ θ ∑ < x i ,

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值