(第24篇)lora论文讲解LoRA: Low-Rank Adaptation of Large Language Models(微调、预训练模型)

第一部分:解决的社会问题

随着预训练语言模型变得更大,传统的微调方法需要重新训练所有模型参数,导致计算资源和存储开销极大。

提出了一个叫做 低秩适配(Low-Rank Adaptation, LoRA) 的方法,用于减少训练超大规模预训练语言模型(例如GPT-3)的参数开销

第二部分:核心思想

低秩适配的工作机制 是:

冻结预训练模型的权重(不更新这些权重),并向Transformer架构中的每一层注入可训练的低秩分解矩阵。这些低秩矩阵能够以较小的参数规模对模型进行调整,而无需对整个模型参数进行微调。

核心思想:在 Transformer 层的权重矩阵中引入低秩分解,将更新矩阵 Δ𝑊表示为 𝐵⋅𝐴,其中 𝐴 和 𝐵 是小规模的可训练矩阵。

适配 Transformer 结构:LoRA 主要对 Transformer 的注意力机制权重(如 𝑊𝑞和 

𝑊𝑣)进行更新,而不是更新所有参数。

LoRA方法的核心机制:</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还不秃顶的计科生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值