LLM之大模型Base、Chat、Instruction之间的区别了解

前言

在大模型的使用当中,我们常常能看到三种模型:基座模型(base)、聊天模型(chat)和指令模型(instruct),在选用的时候,有时候还挺纠结的,就将它们的区别学习记录了下

 

Base模型

定义:Base模型通常是指未经特定任务微调的基础预训练模型,其在大量无标注数据上进行预训练,从而学习到广泛语言特征的模型。这些模型拥有庞大的参数规模,能够在多种任务上展现出卓越的性能,无需从零开始训练

特点与应用:这些模型通常用于进一步的微调,以适应特定任务或应用场景。如:智能对话、文本内容生成等

我的理解:一个人读了很多书,但是它只读书,不做题或加以思考,参加考试恐怕不会很理想

Chat模型

定义:Chat模型是在Base模型的基础上,针对对话和人机交互进行优化的模型,这类模型能够理解上下文,维持对话历史,生成连贯且情境相关的响应。

特点与应用

Chat模型训练方式通常包含对话数据的监督学习以及强化学习。其训练数据包含了大量的多轮对话,模型学习如何基于对话的上下文生成合适的回应。此外,强化学习(通常是通过人类反馈的强化学习,RLHF)用于进一步调整模型的输出,使其更符合用户的期望和礼貌准则

用于生成自然语言对话,能够理解上下文并生成连贯且有意义的回复。如:聊天机器人、客服系统,特别适用于需要与用户进行多轮对话并保存上下文连贯的场合

我的理解:与base模型相比,经过大量的多轮对话训练,能够维持对话历史,生成合理的回应,在经过微调,可以模拟自己喜欢的人物进行对话了,例如孙悟空,二次元动漫等等

Instruction模型

定义:Instruction模型是在Base模型的基础上,通过监督学习特别优化以理解和执行自然语言指令的模型

特点与应用:

Instruction模型通过指令优化,能够高效地执行各种任务,如调取某个工具使用、购买车票、查询天气、设备控制等指令,这些往往需要输出特定格式以调取第三方接口的,其训练过程中使用标注的指令-响应(instruction-response)数据集进行优化,模型在训练时会接收明确的任务指令,并根据指令生成合适的输出。

指令理解:Instruction模型的核心优势是其理解并遵循自然语言指令的能力

清晰输出:Instruction模型往往生成直接答案或者响应,避免了生成冗长、不相干的内容

我的理解:相对于chat模型,在对话能力上可能有所欠缺,或者说文本创造能力有所下降,但是遵循指令,完成特定任务方面更强

参考链接:

大模型各版本Base, Chat, Instruction 之间的区别

一文了解大模型的三种类型 

欢迎大家点赞或收藏~

大家的点赞或收藏可以鼓励作者加快更新哟

<think>好的,我现在需要帮助一个Python新手理解如何本地微调大模型,特别是DeepSeek模型。用户希望得到分步骤的指导,包括Python库安装、微调代码框架、模型保存以及基础模型与微调后的合并方法。我需要确保回答清晰、结构合理,并且适合新手理解。 首先,用户是Python新手,所以安装库的命令需要明确,可能还需要简要说明每个库的作用。比如,transformers、torch、peft、bitsandbytes、trl这些库,用户可能不熟悉,需要简单解释。 接下来,微调的代码框架部分。用户需要具体的代码示例,但作为新手,可能需要更详细的注释。我需要确保代码结构简单,避免复杂参数,同时覆盖数据加载、模型设置、训练参数训练循环。可能还需要提到数据格式,比如JSON的结构,因为用户可能有自己的数据集需要准备。 模型保存部分,要说明如何保存微调后的模型,可能包括保存整个模型或者仅保存适配器部分。这里可能需要区分不同的微调方法,比如全参数微调LoRA,但用户可能使用的是LoRA,所以保存合并的方法需要对应。 基础模型与微调模型的合并是关键步骤,用户可能需要知道如何将LoRA适配器合并回基础模型,以便后续推理。这部分需要提供代码示例,并说明合并后的保存方式。 另外,注意事项部分需要考虑新手常见的问题,比如路径错误、依赖版本冲突、硬件要求等。需要提醒用户检查CUDA版本、库的兼容性,以及显存不足时的应对措施。 在组织回答时,应该分步骤进行,每个部分都有明确的标题,如安装库、代码框架、模型保存、合并模型等。代码块需要用正确的格式显示,并添加注释帮助理解。同时,要使用简单的中文,避免技术术语过多,或在必要时进行解释。 需要验证代码示例是否正确,比如检查是否有拼写错误,是否正确使用Hugging Face的API,比如SFTTrainer的参数是否正确。例如,dataset_text_field是否对应数据中的字段,以及peft_config是否正确配置。还要确保示例中的超参数适合新手使用,比如较小的batch size合理的学习率。 可能还需要提到数据准备的具体例子,比如如何将CSV或文本数据转换成所需的JSON格式,指导用户如何构建自己的数据集。但用户的问题中没有提到数据准备的具体步骤,所以可能不需要展开,但可以简要提及数据格式要求。 最后,确保所有步骤都覆盖了用户的需求:安装、微调代码、保存、合并。并在注意事项中提醒资源监控版本兼容性,帮助用户避免常见陷阱。</think>以下是针对Python新手的本地大模型微调分步指南,包含完整的代码框架操作流程: --- ### 一、Python库安装及命令 ```bash # 基础环境(建议使用Python 3.10) pip install torch==2.0.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117 pip install transformers==4.37.0 pip install peft==0.6.0 # 参数高效微调库 pip install bitsandbytes==0.41.1 # 量化支持 pip install trl==0.7.4 # 强化学习库 pip install accelerate==0.24.1 # 分布式训练 ``` --- ### 二、微调代码框架(以QLoRA为例) ```python from transformers import ( AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig ) from peft import LoraConfig from trl import SFTTrainer import json # 1. 加载基础模型分词器 model_name = "deepseek-ai/deepseek-llm-7b-chat" tokenizer = AutoTokenizer.from_pretrained(model_name) # 2. 配置4位量化 bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16 ) model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, device_map="auto" ) # 3. 配置LoRA参数 peft_config = LoraConfig( r=16, # 秩维度 lora_alpha=32, # 缩放系数 target_modules=["q_proj", "v_proj"], # 修改的注意力层 lora_dropout=0.05, bias="none", task_type="CAUSAL_LM" ) # 4. 加载训练数据(示例格式) with open("train_data.json", "r") as f: train_data = json.load(f) # 5. 配置训练参数 training_args = TrainingArguments( output_dir="./results", num_train_epochs=3, per_device_train_batch_size=2, # 根据显存调整 gradient_accumulation_steps=4, # 梯度累积 learning_rate=2e-4, fp16=True, logging_steps=10, optim="paged_adamw_8bit" ) # 6. 创建训练器 trainer = SFTTrainer( model=model, train_dataset=train_data, peft_config=peft_config, dataset_text_field="text", # 数据字段名 max_seq_length=1024, tokenizer=tokenizer, args=training_args ) # 7. 开始训练 trainer.train() ``` --- ### 三、模型保存方法 ```python # 保存完整微调模型(适配器+基础模型) trainer.model.save_pretrained("./full_fine_tuned_model") # 仅保存适配器(推荐方式) trainer.model.save_pretrained("./lora_adapter") # 保存分词器 tokenizer.save_pretrained("./lora_adapter") ``` --- ### 四、模型合并操作 ```python from peft import PeftModel # 1. 加载基础模型 base_model = AutoModelForCausalLM.from_pretrained( "deepseek-ai/deepseek-llm-7b-chat", device_map="auto" ) # 2. 加载适配器 merged_model = PeftModel.from_pretrained( base_model, "./lora_adapter" ) # 3. 合并模型 merged_model = merged_model.merge_and_unload() # 4. 保存最终模型 merged_model.save_pretrained("./merged_model") tokenizer.save_pretrained("./merged_model") ``` --- ### 五、使用示例 ```python # 加载合并后的模型 model = AutoModelForCausalLM.from_pretrained("./merged_model") tokenizer = AutoTokenizer.from_pretrained("./merged_model") # 生成文本 inputs = tokenizer("请写一首关于春天的诗:", return_tensors="pt") outputs = model.generate( inputs.input_ids, max_length=200, temperature=0.7 ) print(tokenizer.decode(outputs[0])) ``` --- ### 六、注意事项 1. **数据格式要求**: ```json [ { "text": "Instruction: 写邮件\nInput: 请假三天\nOutput: 尊敬的领导,因身体不适..." }, // 更多数据... ] ``` 2. **硬件建议**: - 最低配置:RTX 3090 (24GB显存) - 推荐配置:A100 40GB 3. **常见问题**: - 遇到CUDA内存不足时:减小`per_device_batch_size` - 确保所有库版本严格匹配 - 训练前运行`nvidia-smi`监控显存使用 4. **学习资源**: - Hugging Face文档:https://huggingface.co/docs - PEFT官方示例:https://github.com/huggingface/peft 建议从官方提供的示例数据集开始实验,成功运行后再替换为自己的数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值