遥感学习笔记—光谱指数

参数说明

  • 参数说明:
参数名称英文名称
NIR近红外near infrared
SWIR短波红外short-wave infrared
MWIR中波红外medium-wave infrared
LWIR长波红外long-wave infrared

光谱指数

  • 光谱指数:
参数名称计算公式
NDVI归一化植被指数 ( N I R − R ) ( N I R + R ) \frac{(NIR-R)}{(NIR+R)} (NIR+R)(NIRR)
BAI燃烧面积指数 1 ( 0.1 − R ) 2 + ( 0.06 − N I R ) 2 \frac{1}{(0.1-R)^2 + (0.06-NIR)^2} (0.1R)2+(0.06NIR)21
NBR归一化燃烧指数 ( N I R − S W I R ) ( N I R + S W I R ) \frac{(NIR-SWIR)}{(NIR+SWIR)} (NIR+SWIR)(NIRSWIR)
NBRT改进归一化燃烧指数 ( N I R − S W I R T h e r m a l 1000 ) ( N I R + S W I R T h e r m a l 1000 ) \frac{(NIR-SWIR\frac{Thermal}{1000})}{(NIR+SWIR\frac{Thermal}{1000})} (NIR+SWIR1000Thermal)(NIRSWIR1000Thermal)
GEMI全球环境监测指数 0.6 ( N D V I ) + 0.36 或 0.79 ( G N D V I ) + 0.28 0.6(NDVI)+0.36 或0.79(GNDVI)+0.28 0.6(NDVI)+0.360.79(GNDVI)+0.28
GNDVI绿光归一化差值植被指数 ( N I R − G r e e n ) ( N I R + G r e e n ) \frac{(NIR - Green)}{(NIR + Green)} (NIR+Green)(NIRGreen)
SAVI土壤调节植被指数 ( N I R − R ) ( N I R + R + L ) ( 1 + L ) \frac{(NIR-R)}{(NIR+R+L)}(1+L) (NIR+R+L)(NIRR)(1+L)
NDMI归一化水汽指数 ( N I R − M I R ) ( N I R + M I R ) \frac{(NIR-MIR)}{(NIR+MIR)} (NIR+MIR)(NIRMIR)
NDWI归一化差分水体指数 ( G R E E N − N I R ) ( G R E E N + N I R ) \frac{(GREEN-NIR)}{(GREEN+NIR)} (GREEN+NIR)(GREENNIR)
MIRBI中红外烧伤指数 10 L S W I R − 9.8 S S W I R + 2 10LSWIR-9.8SSWIR+2 10LSWIR9.8SSWIR+2

常见的光谱指数介绍

NDVI

  • NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差。能够部分消除与太阳高度角、卫星观测角、地形、云影等与大气条件有关的辐射变化的影响
  • NDVI是植被生长状态及植被覆盖度的最佳指示因子
  • NDVI的范围是-1到1,正值表示有植被覆盖,覆盖度越大值越大;0表示有裸土或者岩石,负值表示有水、云、雪等。
  • NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;

NBR

  • 归一化燃烧指数能增强较大范围的火灾区域,如大于200公顷
  • 燃烧区域的NBR值会更小

BAI

  • 燃烧面积指数使用红色和近红外波段增强火烧后地表信息,即增强过火后图像上的木炭信号
  • 燃烧区域的BAI值会更高

MIRBI

  • M I R B I = 10 L S W I R − 9.8 S S W I R + 2 MIRBI=10LSWIR-9.8SSWIR+2 MIRBI=10LSWIR9.8SSWIR+2 其中SSWIR:短波红外:1.55-1.75微米,LSWIR:短波红外:20.3-2.35微米

GEMI

  • GEMI可以很好地预测植被覆盖度,并且对土壤的反射率和亮度也很敏感
  • GEMI与NDVI、GNDVI可以转换
    在这里插入图片描述

SAVI

  • “调节土壤的植被指数”(SAVI) 是试图通过土壤亮度校正系数最小化土壤亮度影响的植被指数。它通常用在植被覆盖率较低的干旱区域。
  • SAVI仅在土壤线参数a=1,b=0(即非常理想的状态下)时才适用。因此有了TSAVI、ATSAVI、MSAVI、SAVI2、SAVI3、SAVI4等改进模型。
  • 其中L的取值:取值范围0~1。 L=0 时,表示植被覆盖度为零;L=1时,表示土壤背景的影响为零,即植被覆盖度非常高,土壤背景的影响为零,这种情况只有在被树冠浓密的高大树木覆盖的地方才会出现。

NDMI & NDWI

  • 植被水分指数NDMI是基于中红外与近红外波段的归一化比值指数。与NDVI相比,它能有效地提取植被冠层的水分含量;在植被冠层受水分胁迫时,NDMI指数能及时地响应,这对于旱情监测具有重要意义。
  • NDWI是主要提取水体的,NDMI是提取植被的水分含量

NBRT

  • NBR的基础上,使用了一个热红外波段。NBRT能更好的分离燃烧区和非燃烧区
  • 燃烧区域的NBRT值小

参考资料

本文参考了以下博客及网站的内容:

  1. https://www.tandfonline.com/doi/full/10.1080/01431161.2013.817713
  2. http://blog.sina.com.cn/s/blog_14ddbda800102y5x9.html
  3. http://blog.sina.com.cn/s/blog_764b1e9d0102wh0d.html
  4. http://blog.sina.com.cn/s/blog_764b1e9d0102v86r.html
  5. https://www.esri.com/en-us/arcgis/products/arcgis-pro/resources
  6. https://www.sciencedirect.com/topics/earth-and-planetary-sciences/environmental-monitoring
  7. http://blog.sina.com.cn/s/blog_764b1e9d0102wh0d.html
  8. https://wenku.baidu.com/view/1f54bbebed630b1c58eeb583.html
  9. 吴立叶,沈润平,李鑫慧,杨恒.不同遥感指数提取林火迹地研究[J].遥感技术与应用,2014,29(04):567-574.
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

By-Q

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值