【阶段1】【定理证明】二项式定理证明

本文详细介绍了二项式定理的证明过程,通过杨辉三角形的性质展示了系数的计算。同时,文章还从递推的角度出发,利用动态规划的思想,解释了如何通过行走路径的方式来理解系数的确定,将寻找从原点到特定点的路径数量与二项式定理的系数联系起来。
摘要由CSDN通过智能技术生成

二项式定理:       (a+b)^{k}=\sum_{k=0}^{n}C_{n}^{k}a^{k}b^{n-k}

证明过程:

(a+b)^{k}的项数是k+1,a^{k}b^{n-k}这部分是没有问题的(随便想想就能理解),关键是证C_{n}^{k},系数这个部分

当然,这其实就是杨辉三角形

我们把(a+b)^{k}拆开就会得到=(a+b)(a+b)……(a+b)【k个(a+b)相乘】

我们把式子拆开来运算的过程,相当于在每个括号中任意选a或者b

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值