一次二阶矩法
非线性功能函数g(x)展开成泰勒级数保留一次项,按照可靠指标形成求解方程,可以得到求解可靠度的一次二阶矩法。此方法简单、常用、易于掌握。
一次二阶矩法分中心点法和设计验算点法。中心点法不考虑随机变量的概率密度分布(不足)。
设计验算点法
原理
设独立正态分布变量组合为结构极限状态方程及极限状态面
上的一点,在该点按泰勒级数展开保留一次项,得
同时可以得到的均值以及标准差
结构可靠性指标为
令
处于极限状态面上及值为0,且把Xi用标准化变量替换,并除以
得到
令
由上面推导,上式可整理成:
该方程为Y空间内的法线式超平面方程如图(二维情形),可靠度指标β为该空间内坐标原点到该极限状态面的最短距离,p*点称为设计验算点
设计验算点在Y空间中的坐标为
转化为原始空间的坐标为
可以利用如下迭代方法得到可靠度指标β
当量正态法(JC法)
当处理的X变量为非正态分布时,我们可以把它处理成相应的当量正态化变量X‘。JC法中进行该处理需满足在验算点处和
的累积分布函数和概率密度函数分别对应相等,即
则当量正态化变量的均值和标准差为:
完成替换以后,我们就可以利用前面所述方法求得相应的可靠度指标。
映射变换法
该方法的思想是利用累积分布函数值相等的映射,将非正态分布随机变量变换为正态分布随机变量。
对于随机变量有概率密度函数
和累计分布函数
,我们可以作一定变换(等概率变换)将它映射为标准正态变量Y:
由此可得
其中Y是标准正态向量,且可以推导出:
其中
同前面,我们可以用该方法,把其他分布的变量转化为标准正态变量。然后运用第一节方法得到结构可靠度指标。基本流程如下: