01背包问题(动态规划)

1. 问题

  有 n 个物品,它们有各自的重量 weight 和价值 value,现有给定容量 C 的背包,如何让背包里装入的物品具有最大的价值?每个物品只能使用一次。

2. 分析

需要求解的是:最大价值 MaxValue
约束条件:选择的物品总重量 < C
递推公式(面对当前物品可能有两种情况):
  (1)包的容量比该物品体积小,装不下,此时的价值与前 i-1 个的价值是一样的,因此 d p [ i ] [ j ] = d p [ i − 1 ] [ j ] dp[i][j] = dp[i-1][j] dp[i][j]=dp[i1][j]
  (2)可以装该物品,但装进去不一定是当前最大价值,比较装进去后和不装的价值大小,取较大的那一个,因此 d p [ i ] [ j ] = m a x ( d p [ i − 1 ] [ j ] , d p [ i − 1 ] [ j − w [ i ] ] + v [ i ] ) dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i]) dp[i][j]=max(dp[i1][j],dp[i1][jw[i]]+v[i])

3. 代码

#include<iostream>
#include<cmath>
using namespace std;

int C;  //背包容量 
int number;  //物品数量
int w[10], v[10];  //物品的重量和价值 
int dp[10][10] = {{0}};  //保存价值的二维数组--动态规划 

//找到最大价值 
void MaxValue()
{
	for(int i = 1;i <= number;i++){  //注意:i,j从1开始 
		for(int j = 1;j <= C;j++){
			if(j < w[i]) //不能装 
				dp[i][j] = dp[i-1][j];
			else //装 
				dp[i][j] = max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);
		}
	}
}

int main()
{
	cout<<"01背包问题"<<endl;
	cout<<"Please input the bag's capacity:";
	cin>>C;
	cout<<"Please input goods' number:";
	cin>>number;
	cout<<"Please input goods' weight:";
	for(int i = 1;i <= number;i++){  //注意:i从1开始 
		cin>>w[i];
	}
	cout<<"Please input goods' value:";
	for(int i = 1;i <= number;i++){
		cin>>v[i];
	}
	
	MaxValue();  //找到最大价值 -- 动态规划 
	cout<<"\n(1)动态规划\nThe bag's max vlaue is :"<<dp[number][C]<<endl;
	cout<<"The values of dp[][] are as follows:\n";
	for(int i = 0;i <= number;i++){ //输出dp数组 
		for(int j = 0;j <= C;j++){
			cout<<dp[i][j]<<" ";
		}
		cout<<endl;
	}
	
	return 0; 
}

4. 效果

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
01背包问题是一个经典的动态规划问题。它的目标是在给定背包容量的情况下,选择一些物品放入背包中,使得物品的总价值最大化,同时要保证背包的容量不超过限制。根据动态规划的原理,我们可以通过以下步骤来解决01背包问题: 1. 问题抽象化:将问题抽象为在给定背包容量和物品列表的情况下,选择一些物品放入背包中,使得物品的总价值最大化。 2. 建立模型:定义变量Vi表示第i个物品的价值,Wi表示第i个物品的体积。定义V(i,j)为当前背包容量j,前i个物品最佳组合对应的价值。 3. 寻找约束条件:约束条件是背包的容量不能超过限制,即对于每个物品i,有Wi <= j。 4. 判断是否满足最优性原理:最优性原理指的是最优解的子问题也是最优解。在01背包问题中,如果我们选择放入第i个物品,那么剩余背包容量就变为j-Wi,此时的最优解就是V(i-1,j-Wi)加上第i个物品的价值Vi。如果我们选择不放入第i个物品,那么最优解就是V(i-1,j)。因此,我们可以得到递推关系式:V(i,j) = max(V(i-1,j), V(i-1,j-Wi) + Vi)。 5. 找大问题与小问题的递推关系式:根据上述递推关系式,我们可以通过填表的方式来计算出所有的V(i,j)。 6. 填表:从i=1到n,j=0到背包容量的范围,依次计算V(i,j)的值。 7. 寻找解组成:通过填表的过程,我们可以得到最优解对应的V(n,C)的值,其中C为背包的容量。然后,我们可以根据V(i,j)的值逆推出最优解的组成方式。 综上所述,通过以上步骤,我们可以使用动态规划来解决01背包问题,并得到最优解以及解的组成。 #### 引用[.reference_title] - *1* *2* *3* [【动态规划】01背包问题(通俗易懂,超基础讲解)](https://blog.csdn.net/qq_38410730/article/details/81667885)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值