生成式学习算法与判别式学习在底层逻辑上有很大区别。生成式学习算法对于特征分布的建模,其思想是“知其然,也知其所以然”,采用贝叶斯推断(Bayes Rule)作为算法核心其实更体现出这是一种人工指导学习规则的学习算法,与大家熟知的“一步步减小损失函数”有很大的不同。具体看笔记。
生成式学习算法总结如下
最后,关于朴素贝叶斯算法(Naïve Bayes),推荐一篇解释生动形象的博文,希望对大家理解算法本质有一定帮助。(果然要举例子的解释才是好的解释),链接如下:
彻底理解朴素贝叶斯算法