一步一步机器学习(三):生成式学习算法

本文探讨了生成式学习算法的原理,强调其与判别式学习的区别,特别是通过贝叶斯推断进行建模。重点介绍了朴素贝叶斯算法,并推荐了一篇深入浅出的博文辅助理解该算法的本质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

生成式学习算法与判别式学习在底层逻辑上有很大区别。生成式学习算法对于特征分布的建模,其思想是“知其然,也知其所以然”,采用贝叶斯推断(Bayes Rule)作为算法核心其实更体现出这是一种人工指导学习规则的学习算法,与大家熟知的“一步步减小损失函数”有很大的不同。具体看笔记。

生成式学习算法总结如下

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

最后,关于朴素贝叶斯算法(Naïve Bayes),推荐一篇解释生动形象的博文,希望对大家理解算法本质有一定帮助。(果然要举例子的解释才是好的解释),链接如下:
彻底理解朴素贝叶斯算法

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值