例子① 计算矩阵的特征值和特征向量
例子② 利用特征值和特征向量进行矩阵对角化
例子③ 利用特征值和特征向量进行矩阵相似变换
例子④ 利用特征值和特征向量进行矩阵的奇异值分解
——例子① 代码如下:
A = [1 2 3; 4 5 6; 7 8 9]; % 创建一个3x3的矩阵A
[V, D] = eig(A); % 计算矩阵A的特征向量和特征值
disp('特征向量:');
disp(V);
disp('特征值:');
disp(D);
操作步骤:
- 打开Matlab软件;
- 新建一个脚本文件;
- 复制以上代码到脚本文件中;
- 运行脚本文件。
解析:
以上代码创建了一个3x3的矩阵A,并使用eig函数计算了矩阵A的特征向量和特征值。其中,V是一个3x3的矩阵,每一列是矩阵A的一个特征向量;D是一个3x3的对角矩阵,对角线上的元素是矩阵A的特征值。通过输出特征向量和特征值,我们可以更好地了解矩阵的性质和特点。