本文主要介绍小波变换(Wavelet)、双树复小波变换(Dual-Tree Complex Wavelet)和曲波变换(Curvelet)。以及它们作为池化层的应用、简单介绍、论文和代码整理。
小波变换
小波变换作为池化层
相关知乎解读
相关代码
- Pytorch版本
2D Wavelet Transforms in Pytorch - TensorFlow版本
Tensorflow实现小波池化层
相关论文
-
基于小波池化层的卷积神经网络
Wavelet pooling for convolutional neural networks -
小波集成的噪声稳健图像分类
Wavelet Integrated CNNs for Noise-Robust Image Classification
-
用于纹理分类的小波卷积神经网络
Wavelet Convolutional Neural Networks for Texture Classification
双树复小波变换
作者官网
Signal Processing and Communications Laboratory
Matlab和Python代码
DTCWT
相关论文
- 双树复小波变换——多尺度信号和图像处理的相干框架
The Dual-Tree Complex Wavelet Transform – A Coherent Framework for Multiscale Signal and Image Proce - 双树复小波变换
Dual-Tree Complex Wavelets - their key properties and a range of image-processing applications
双树复小波变换作为池化层
相关代码
相关论文
-
基于卷积小波神经网络和马尔可夫随机场的SAR图像分割
SAR Image segmentation based on convolutional-wavelet neural network and markov random field
-
一种基于双树复合小波变换的人形甲状腺医学图像分割卷积神经网络
A Dual-Tree Complex Wavelet Transform based Convolutional Neural Network for Human Thyroid Medical Image Segmentation
-
基于卷积小波神经网络的SAR图像海冰变化检测
Sea Ice Change Detection in SAR Images Based on Convolutional-Wavelet Neural Networks
曲波变换
相关代码
Curvelet官网
曲波变换作为池化层
相关论文
- Synthetic aperture radar image change detection based on convolutional-curvelet neural network and partial graph-cut
基于曲波卷积神经网络和局部图切的SAR图像变化检测
文章描述
持续更新中