小波变换和曲波变换用于池化层

本文探讨了小波变换、双树复小波变换及曲波变换在卷积神经网络(CNN)中的应用,特别是在作为池化层的场景下。介绍了基于这些变换的CNN在图像分类、纹理识别及噪声鲁棒性方面的研究进展,并提供了相关代码和论文资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文主要介绍小波变换(Wavelet)、双树复小波变换(Dual-Tree Complex Wavelet)和曲波变换(Curvelet)。以及它们作为池化层的应用、简单介绍、论文和代码整理。

小波变换

小波变换作为池化层

相关知乎解读

相关代码

相关论文

双树复小波变换

作者官网
Signal Processing and Communications Laboratory
Matlab和Python代码
DTCWT

相关论文

双树复小波变换作为池化层

相关代码

相关论文

曲波变换

相关代码
Curvelet官网

曲波变换作为池化层

相关论文

持续更新中

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值