Pytorch 学习笔记 nn.ModuleList与nn.Sequential

Pytorch 学习笔记 nn.ModuleList与nn.Sequential

nn.Sequential是Module的子类,在构建若干个网络层之后,由于其内部已经封装好了forward函数,可以直接调用forward方法。

nn.ModuleList也是Module的子类,类似于python中的列表,构建的过程相当于将一系列层装入了这个list,但不管ModuleList包裹了多少个层,内嵌的所有层都要是可迭代的Module的子类。由于其内部并没有封装forward函数,需要网络结构独立构建forward函数,在forward函数中可以引用ModuleList的成员。
当使用ModuleList包裹各个层之后,可以像python里的list一样对模型的各个层进行索引,同时这些层的参数将会被自动注册,这些层的参数只有被正确注册之后,优化器才能发现和训练这些参数。

以MAE中编码器的Block定义为例

		 # 定义编码器的transformer block,使用的是timm库里面封装好的block
        self.blocks = nn.ModuleList([
            Block(embed_dim, num_heads, mlp_ratio, qkv_bias=True, norm_layer=norm_layer)
            for i in range(depth)])
        
        def forward_encoder(self, x, mask_ratio):
        # apply Transformer blocks
        for blk in self.blocks:
            x = blk(x)
        x = self.norm(x)
        # 得到encoder的输出
        return x, mask, ids_restore

参考:
https://blog.csdn.net/xiaojiajia007/article/details/82118559
https://blog.csdn.net/yangwangnndd/article/details/95074331

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
pytorch 是一个高效的深度学习框架,其中nn.modulelistnn.sequential是常用的模块。这两种模块都可以用于创建深度学习网络,并且能够实现自动求导。nn.sequential 是一个有序的容器,其中每个模块按照传入的顺序依次进行计算。nn.modulelist 是一个无序的容器,其中每个模块都可以以列表的形式存储,且没有特定的计算顺序。 nn.sequential 模块的优点是简单易用,并且可以通过一行代码构建和训练网络。例如,要创建一个简单的两层全连接神经网络,可以如下代码实现: ``` model = nn.Sequential(nn.Linear(784, 64), nn.ReLU(), nn.Linear(64, 10), nn.Softmax(dim=1)) ``` 这会定义一个两个全连接层网络以及 ReLU 和softmax 激活函数,输入大小为 784(MNIST 图像大小) ,输出大小为 10(10 个数字)。 nn.modulelist 是一个更加灵活的容器,可以在其中添加任意的子模块。要使用 nn.modulelist,需要先创建一个空的 nn.modulelist,然后手动向其中添加子模块。例如,可以这样创建一个相同的两层全连接网络: ``` model = nn.ModuleList([ nn.Linear(784, 64), nn.ReLU(), nn.Linear(64, 10), nn.Softmax(dim=1) ]) ``` 需要注意的是,nn.modulelist 中的子模块顺序可能会影响计算结果,因为没有特定的训练顺序。因此,在使用 nn.modulelist 时应该尽量保证顺序的准确性。 综上所述,nn.sequentialnn.modulelist 都是常用的容器,用于组织神经网络中的子模块,它们在不同场景下具有各自的优势。在简单的前向计算中,nn.sequential 更加容易使用;在需要更好的灵活性时,nn.modulelist 可以更好地实现目标。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值