学习
史蒂芬方
这个作者很懒,什么都没留下…
展开
-
欧式距离与余弦相似度的比较
該文章轉載 歐氏距離與餘弦相似度的比較在數據挖掘中,相似性度量是個基礎且重要的問題,我們經常想得知兩個個體之間存在的差異大小,藉由一個合適的度量方式,幫助我們執行分群、分類等任務。在眾多度量方式,最耳熟能詳的莫過於歐式距離、餘弦相似度,這篇文章將帶領讀者初探兩者的原理及應用場景。歐式距離歐式距離或稱歐幾里得距離,一種簡單直觀且有效的距離度量方式。回想初中計算座標(x1,y1)、(x2,y2)...转载 2020-04-22 14:02:03 · 717 阅读 · 0 评论 -
卡尔曼算法思想理解 Kalman filter 第二篇
卡尔曼算法思想理解 Kalman filter 第二篇接下来这篇, 要从算法的角度出发了还没上车的朋友们 请从卡尔曼算法思想理解 Kalman filter 第一篇 务必先读过, 没有公式没有公式没有公式首先我们将上一篇太空船的例子借用一下, 还记得我们用了一个K控制器 放在测量与观察之间吗? 也记得我们说过K是要将y与yhat之间的误差降至最小对吧?这一整个浅蓝色的部位我们可以理解为...原创 2020-04-13 12:52:45 · 478 阅读 · 1 评论 -
卡尔曼滤波算法思想理解 Kalman filter 第一篇
卡尔曼算法思想理解 Kalman filter 第一篇最近在初步的理解目标跟踪的领域, 其中一个非常经典的算法卡尔曼滤波Kalman filter是需要有很好的理解才行, 由于已经脱离了学校,懂得寻找资源学习就变的非常重要, 我会先找找国内资源有没有好的视频讲解算法, 但通常一搜下来的结果不是一开始就讲公式不讲来由, 不然就是讲的太差还好意思上传的, 对于这样的资源实在不敢花时间观看, 人生短暂...原创 2020-04-12 23:00:20 · 1543 阅读 · 1 评论 -
Deformable ConvNet DCN 可变形卷积的理解
先声明这篇只是快速的复习用, 用词比较自我加随性,多见谅代码解说的地方很多参考了这个连结首先DCN有两个版本, 大家都知道的v1就是单纯的加了offset偏移, 另一个v2就是从v1的基础上再加上了modulation, 也就是对学习对所有位置的权重DCN v1 作用v1: 多用了一个卷积学习出偏移offset的值, 相较于原先标准的卷积在感受野上有多更多分布的采样点, 原来标准的卷积不...原创 2020-04-06 20:27:35 · 1497 阅读 · 1 评论 -
卷积参数量计算(标准卷积,分组卷积,深度可分类)
卷积参数量计算 总整理这边其实算写给我自己复习用的, 就没有用博客的口吻了 简单为主预备知识FLOPs: s小写,指浮点运算数,理解为计算量。可以用来衡量算法/模型的复杂度。(模型) 在论文中常用GFLOPs(1 GFLOPs = 10910^9109 FLOPs)相当于十亿次参考轻量级神经网络“巡礼”(一)—— ShuffleNetV2轻量化网络ShuffleNet MobileN...原创 2020-03-29 13:38:11 · 8357 阅读 · 0 评论 -
双线性插值法 Bilinear interpolation
一、影像放大 Image Enlargement在影像處理上,對來源影像(Source Image) 做放大,一直都是很實際也很常見的需求。例如:假設你今天買了一台4K的螢幕(標準的解析度為:40962160),但是你今天要播放的片源為Full HD(19201080)的,那麼問題就來啦~ 你的螢幕該如何顯示呢? 總不能就螢幕中間一塊有影像其他地方都黑的吧…如果這樣的話,你還不打爆這螢幕製造...转载 2020-03-01 16:14:33 · 2878 阅读 · 0 评论 -
如何隐藏C/C++编译生成的函数符号
以下内容转载自 http://hongbomin.com/2016/06/24/how-to-hide-symbols-of-c-functions/如何隐藏C/C++编译生成的二进制文件中的函数符号以及字符串,减少软件暴露出来的信息。通常,在二进制文件(静态库、动态库、可执行文件等)中包含了程序运行所需要的汇编指令、字符串、变量、导入导出的函数符号,以及一些其他的资源。其中包含的函数符号和...转载 2020-02-14 23:39:40 · 4817 阅读 · 0 评论 -
cblas_sgemm 源码讲解
阅读Caffe源码必须理解的矩阵相乘函数以下为转载原文链接:https://blog.csdn.net/zhikangfu/article/details/782583931:函数原型:cblas_sgemm(order,transA,transB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC);函数作用:C=alphaAB+beta*Calpha =1,be...转载 2019-11-18 11:20:39 · 758 阅读 · 0 评论 -
完整学习 ResNet 家族 ResNext, SEResNet, SEResNext 代码实现- part2
我的更新一向缓慢因为实在太忙碌了, 然后写这些笔记主要也是希望要自己以及看的人都能学到东西, 我写的文章只要你认真的从头看到尾一定有收获, 每个知识点能讲齐的一定会说明白,要是不行, 也会找个链接补充的好了屁话少说这篇延续上一篇介绍的ResNet, 来说一下ResNext吧ResNext主要从ResNet的网络做了一些变化, 老样子先从理论在从代码上说会更清楚如果不清楚ResNet的结构...原创 2019-10-13 18:15:04 · 4616 阅读 · 5 评论 -
完整学习 ResNet 家族 ResNext, SEResNet, SEResNext 代码实现- part1
ResNet一直都是非常卓越的性能级网络从 2015年诞生的原型ResNet一直到最近后续加了squeeze-and-excitation 模块的SEResNet, 因为残差机制使得网络层能够不断的加深并且有效的防止性能退化的问题今天老样子先说原理后上代码和大家一起了解ResNet的理论和实际代码中的架构, 之后再说到其他变种解决的问题深度网络造成的问题1.梯度消失,爆炸2.网络性能退...原创 2019-09-24 22:11:09 · 10815 阅读 · 3 评论 -
FocalLoss 对样本不平衡的权重调节和减低损失值
最近因为在做图像分类考虑到一些样本不平均的问题所以有机会尝试了一下FocalLoss这个损失函数(由Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, Piotr Dollár提出)也重新的理解了一次这个损失函数是如何运作首先我们要知道FocalLoss诞生的原由,要解决什么样的问题?解决问题针对one-stage的目标检测框架(例...原创 2019-09-11 16:21:41 · 6311 阅读 · 3 评论 -
用商汤的mmdetection 学习目标检测中的 Recalls, Precisions, AP, mAP 算法 Part2
还没看part1 的请移步 用商汤的mmdetection 学习目标检测中的 Recalls, Precisions, AP, mAP 算法 Part1好的,在part1 中·我们已经求的了TP 以及 FP, 也就是检测出的所有可能(无论是对的还是错的)我们先整理一下求到的值, 一共是两类 label1 和 label2 人和汽车类第一类 label 1 : 人还记得我们对于第一类总共检测...原创 2019-08-21 17:31:51 · 4614 阅读 · 2 评论 -
用商汤的mmdetection 学习目标检测中的 Recalls, Precisions, AP, mAP 算法 Part1
学习目标检测一定少不了的评测方式, 就是透过recalls, precisions, 来计算出类别的AP, 以及最后所有AP的平均值 mAP(mean Average Precision) 也就是我们最关心的数值这边先简单的了解一下confusion matrix, 也就是所谓的混肴矩阵, 我个人不觉得这是一个很好的翻译, 最好记得英文就行, 在分类任务中这是一个非常重要的评测指标下图是一个基...原创 2019-08-20 18:52:10 · 9622 阅读 · 2 评论 -
RoI Pooling 到底是如何运作的?轻松理解
鉴于网上博客许许多多的例子都写的让人难以理解我觉得既然分享了就要让人看的懂那我就自己写一个能让初入目标检测的小伙伴都能懂的呗借用一张图来表示整个RoI Pooling的架构ps.为了比照原来设定比例, 我把32改成16首先我们从左手边开始看起, 我们都知道Faster RCNN最一开始就是输入一张原图那么这个例子中的原图就是800*800大小的接着经过骨干网络VGG16的extra...原创 2019-07-24 22:17:41 · 7717 阅读 · 5 评论 -
Faster-RCNN anchor box Pytorch 锚点生成 (含代码)
Faster RCNN 的anchor box 是如何生成的?简单科普一下anchor box 在Faster RCNN 中就是像以下这样的框框可以分成3种长宽比,3种缩放比, 以这样的配置来组合成一组anchor框组那么可以很容易的看出一组就是3x3(也就是9个)个anchor box所组成那么这9个anchor box是如果画在图像上的呢?可以透过自定义的px, py 中心点来计算...原创 2019-07-06 23:42:51 · 4416 阅读 · 3 评论 -
Bias偏差 and Variance方差 概念简单理解
Bias偏差 and Variance方差以下内容依照原文有修改一些, 加上一些自己的理解让初学更好去记忆中间有夹杂原文与中文,是想说这些专有的名词最好也要熟悉, 毕竟论文都还是以英文为主的, 有时候英语确实能更直观的感受到意思正文我们要如何得知一个模型的跑出来的效果好不好?就取决于模型的预测能力以及在测试集上的泛化能力假如今天我们要预测一下中国人喜欢复联4的人多还是喜欢玩具总动员4的人...原创 2019-06-21 16:01:04 · 2690 阅读 · 0 评论 -
vim 插件 YouCompleteMe 代码补全 Linux 最新2019
vim - YouCompleteMe 代码补全插件 2019vim的插件安装过程其实并不复杂, 只要有照着正确的步骤, 一定能安装到位安装将分为两大项首先安装Vundle 插件管理器, 这是套插件管理器, 在安装及卸载插件上都有很大的帮助PS. 如果已经安装请忽略Vundle 插件管理器以下分两步install终端中执行以下指令git clone https://git...原创 2019-06-14 16:45:40 · 16815 阅读 · 13 评论 -
EfficientNet B0 训练 Standford 汽车图片分类(对比ResNet34)
EfficientNet B0 训练 汽车图片分类(对比ResNet34)近期google发布了新的model,不仅让整个参数量大幅的降低, 主要利用同时调整模型的width, depth, resolution来让训练过程跟结果达到比较高效的目的, 大概也是为什么model直接叫做Efficient Net吧?(笑)详细的参数公式在论文里面有介绍, 有兴趣可以自行参考研究,我是数学傻帽环境...原创 2019-06-07 16:46:42 · 8301 阅读 · 19 评论