softmax激活函数与softmax损失函数

一、softmax()激活函数

        在二分类任务中,输出层使用的激活函数为 sigmoid,而对于多分类的情况,就需要用到softmax 激活函数给每个类都分配一个概率。多分类的情况下,神经网络的输出是一个长度为类别数量的向量,比如输出是(1,1,2),为了计算概率,可以将其中的每个除以三者之和,得到 (0.25, 0.25, 0.5)。
        但是这样存在一个问题,比如像 (1,1,-2) 这种存在负数的情况,这种方法就不行了。解决办法是先对每个元素进行指数操作,全部转换为正数,然后再用刚才的方法得到每个类别的概率。softmax 函数将每个单元的输出压缩到 0 和 1 之间,是标准化输出,输出之和等于 1。softmax 函数的输出等于分类概率分布,显示了任何类别为真的概率。softmax 公式如下:
在这里插入图片描述
下图是更形象的例子:
在这里插入图片描述

二、softmax损失函数

softmax loss损失函数详解

参考文章:
激活函数与损失函数
softmax loss损失函数详解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值