三路划分
普通的快速排序相当于二路划分,就是将数分为小于和大于,针对等于的数不太关注,不同的模版放在不同的位置。
这样处理当然简便,但是把难题留给了算法过程,耗费了很多时间。
因此我们单独开辟一个等于pivot的区域,置于小于和大于两个区域的中间
这样每次二分递归的时候,就不用遍历等于pivot的数了。
具体说明:
设置三个指针
- l p lp lp指针指向左侧区域的最后一个元素,初始为 l − 1 l-1 l−1
- r p rp rp指针指向右侧区域的第一个元素,按理说初始也应该为 r + 1 r+1 r+1。但我们采取将一开始取的pivot放在最右侧,最后再放回来,因此 r r r 留给pivot,所以 r p rp rp 取在 r r r,即假定最后一个元素是属于右区间的。
- i i i 即为遍历的指针,初始为 l l l,直到遇到 r p rp rp 指针为止。
然后就要根据 q [ i ] q[i] q[i]的值分三种情况了:
- 如果值等于pivot,那么直接找下一个元素,其他都不用变,即默认中间区域多了个元素。
- 如果小于,那么要与 l p + 1 lp+1 lp+1交换,因为 q [ l p + 1 ] q[lp+1] q[lp+1]是等于pivot的(中间区域),然后交换到左边的元素就是刚判断完小于pivot的数,那么只需要让左端区域的指针右移即可。
- 如果大于,那么就要与
l
p
−
1
lp-1
lp−1交换,道理同上。但要注意一点,此时换来的元素是还未遍历过的。因此
i
i
i 不要动,下一轮先判断刚过来的元素。
具体代码如下:
#include <iostream>
using namespace std;
const int N = 100010;
int q[N], n;
void threeWaySort(int l, int r){
if(l >= r)return;
int pivot = q[(l+r)>>1];
swap(q[(l+r)>>1], q[r]); // 把pivot换到最右边
int lp = l - 1, rp = r, i = l;
while(i < rp){
if(q[i]<pivot){
swap(q[i], q[lp + 1]);
i++;
lp++;
}else if(q[i]>pivot){
swap(q[i], q[rp - 1]);
rp--;
}else{
i++;
}
}
swap(q[i], q[r]); // 换回来pivot
threeWaySort(l, lp);
threeWaySort(rp + 1, r);
}
int main() {
scanf("%d", &n);
for(int i=0;i<n;i++) scanf("%d", &q[i]);
threeWaySort(0,n-1);
for(int i=0;i<n;i++) cout << ' ' << q[i];
return 0;
}