- 博客(29)
- 收藏
- 关注
原创 stata测量健康不平等的方法,集中指数估算、健康不平等的分解
stata测量健康不平等的方法,集中指数估算、健康不平等的分解、Oaxaca分解的stata
2022-08-24 18:01:29 6871 10
原创 repeated time values within panel
repeated time values within panel面板数据
2022-05-09 21:36:14 4808 1
原创 *: 3200 conformability error解决方案
/**: 3200 conformability error _xsmle_est(): - function returned error stata空间面板回归xsmle 命令遇到r(3200)错误
2022-05-03 22:44:49 13669 4
原创 type mismatch、contains nonnumeric characters; no replace怎么解决
type mismatch、contains nonnumeric characters; no replace怎么解决,stata如何修改数据类型
2022-03-08 19:37:40 21884
原创 【repeated time values within panel如何解决】
repeated time values within panel、option not allowed在构造面板数据时,这些如何解决。
2022-01-24 10:23:00 33340
原创 截面DID如何构造相关论文与代码实现
最近听了导师的课,恰逢看了之前积累的截面DID论文,对截面DID有一个新的认识,记录记录。先总结如何构建截面DID,再搭配论文具体分解这个方法,最后附上相关的代码语句。1.构建截面DID的思路:有时候我们只有截面数据,但是又想解决内生性问题,有可能构造两个维度的差分,这时候用截面DID是一个不错的选择。为了说明如何构造两个层面,先放上DID的原理2.结合文献来探讨如何构造截面DID例一:金融研究中《回不去的家乡? ———教育公共品供给与人口回流的实证研究》在这篇论文中,我们可以看出,以是否有
2021-05-20 21:03:07 5494
原创 内生转化模型movestay
1.语句2.资料和学习视频注:在不收敛情况下,自己还没有想到办法解决,先记录下语句,以防日后使用。movestay Y X1 X2 X3 , select( X = X1 X2 X3 X4 )*前面的变量是一些控制变量,后面分组是核心关键变量,等于后面是工具变量 mspredict yc1_1 ,yc1_1 //参与者的实际收益 mspredict yc1_2 ,yc1_2 //未参与者假设参与后的收益 mspredict yc2_1 ,yc2_1 //参与者假设未参与后的
2021-04-02 08:57:27 4802 2
原创 stata中的psm语句
用PSM方法两次了,早想记录这一语句了,迟到但到!先记录这一个,看后期会不会用到PSM-DID这一语句,就继续更。直接上语句///PSMssc install psmatch2help psmatch2psmatch2 D x1 x2 x3,outcome(y1)logit ties ate common odds/*D是处理变量(分组变量),x估计概率的变量——看文献,哪些因素会影响参与培训,outcome指定结果变量——y1,Logit模型*/psmatch2 D x1 x2 x3,ou
2021-03-14 19:13:03 7439 2
原创 HLM(多层线性模型)在stata中语句
在阅读CEPS中发现有些研究采用的是HLM模型,HLM简单来说用一个方程跑两个回归。举例,对学习成绩影响因素,不同层有不同的影响,如在个体层面上个体特征会对成绩产生影响,在学校层面学校排名等因素会对成绩产生影响,两种因素不在一个层面,每层造成的差异都不相同。在找相关语句时候发现操作这个语句的软件大多是SPSS和HLM,对于stata操作者并不友好。因此,在有限资料中总结了HLM在stata中的语句,后面会附上学习视频和链接。先放语句,后面对方程式一个大致解析。由于针对HLM有一本书的介绍,可能一篇文章无
2021-03-14 19:04:35 13471 5
原创 ivreg2的安装与错误
今天一下午都栽在ivreg2的安装上,本来是想跑一个工具变量回归就完美收官的,结果发现没有安装ivreg2,真是巧妇难为无米之炊啊,以为一会会就能跑完的,结果一个下午都没有安装好,晚上莫名巧妙好了,但是后续还是有点问题,最后还是安装上。怎么每一次的困难都有遇到,不过还好都解决了。这里记录一下每一次安装遇到的问题和如何解决的,代码分别是什么。///第一步,当然是惯性安装语句ssc install ivreg2///结果发现没有,那就findit ivreg2///这里就发现,是可以在网页中安装的,本
2021-01-25 23:13:03 19203 8
原创 机制检验——中介检验
纠结了半年的机制检验,到底是调节效应还是中介效应,这两者区别到底在哪里,目前有一点点眉目了,一步步更新和完善。先更新中介效应的代码,后面有时间接着完善两者区别和代码。use "http://www.stata-press.com/data/r15/gsem_multmed", clear///三步法reg perform support //分析 x 和 y 之间的关系reg satis support //分析 x 和 m 之间的关系reg perform satis suppo
2021-01-24 17:46:36 8690 1
原创 倒U型
倒U型最近在学习倒U型,虽然自己没有用上,但是留着作为以后备用,放假了可以时常更新之前学习的stata代码。这里放一下检验倒U型的代码,主要是从连老师和B站视频中学到的,后期会放上相关链接。sysuse "nlsw88.dta", cleargen ttl_exp2 = ttl_exp * ttl_expreg wage ttl_exp ttl_exp2ssc install utestutest ttl_exp ttl_exp2, fiellersum ttl_exp///这是看utes
2021-01-24 12:47:00 3782
原创 道德风险与逆向选择
道德风险与逆向选择信息经济学的原话: 逆向选择和道德风险是通过不对称信息发生的时间来划分的(两者相对而言,也有事前和事后道德风险)。逆向选择被归结为契约订立之前的隐匿信息问题,道德风险则被归结为契约订立之后的隐藏信息或隐藏行为问题。本文将能够使代理人谎报真实知识的问题归结为逆向选择,将可能使代理人采取委托人并不希望的行为的问题归结为道德风险。在逆向选择中,代理人的不同类型是事先外生给定的;在道德风险中,私人信息是代理人的行动,该行动是代理人主动选择的,私人信息是内生决定的。 两者混合发生的,现
2020-05-19 21:55:11 8807
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人