机制检验——中介检验

纠结了半年的机制检验,到底是调节效应还是中介效应,这两者区别到底在哪里,目前有一点点眉目了,一步步更新和完善。先更新中介效应的代码,后面有时间接着完善两者区别和代码。

use "http://www.stata-press.com/data/r15/gsem_multmed", clear
///三步法
reg perform support    //分析 x 和 y 之间的关系
reg satis support      //分析 x 和 m 之间的关系
reg perform satis support

///两步法
reg satis support      //分析 x 和 m 之间的关系
reg perform satis support

///sobel test
sgmediation perform, mv(satis) iv(support)

bootstrap r(ind_eff) r(dir_eff), reps(200) :  ///
        sgmediation perform, mv(satis) iv(support)    //计算中介效应和间接效应
estat bootstrap, percentile bc      //计算置信区间

///第一步更新

当然可以提供另一种常见的机制检验方法——基于 Baron 和 Kenny (1986) 提出的经典四步法。这种方法适用于因果链明确的情况,并能帮助判断某变量是否作为机制变量发挥作用。 下面是采用此方法,在 Stata 中完成机制检验的具体实现步骤: ```stata // 步骤0:准备数据(假设自变量名为X,因变量Y,机制变量M) // Step 1: 检查 X 对 Y 的总效果是否存在 regress Y X a b c, robust // 如果 X 的系数显著,则继续下一步;否则停止,因为无总体效应就无需探讨中介路径。 // Step 2: 测试 X 是否能够预测 M (即验证 X 到 M 的路径a) regress M X a b c, robust // 记录此时得到的回归系数 β_a ,如果它不等于零则说明存在从处理到媒介的过程。 // Step 3: 确认 M 能否独立解释 Y 变化(即考察 M -> Y 或者称为 path b ) regress Y M X a b c ,robust // 同样保存该处估计值β_b 。若其统计意义强,则表示媒介确实有助于理解目标结果变化原因。 // Optional Final Check(Optional): Combine all variables together into one model // This optional step aims to reevaluate both paths simultaneously while controlling for each other. regress Y M X a b c, robust ``` 上述过程详细阐述了一种经典的逐步分解法来进行机制评估。每一步都至关重要,需要分别确认各个关键环节的有效性才能得出最终结论关于特定因素是不是真正起到了桥梁的作用连接起两个原本看似孤立的现象之间联系纽带的功能定位角色身份属性特征特性特点特质等等说法都可以形容这种情况下的这种特殊性质啦~
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值