迹函数回顾

迹函数

在线性代数中,一个n×n矩阵A的主对角线(从左上方至右下方的对角线)上各个元素的总和被称为矩阵A的迹(或迹数),一般记作 T r ( A ) \mathrm {Tr} (A) Tr(A)

矩阵的迹表示的是特征值的和,它不随基的变化而变化。通常,这种特性可以用来定义线性算子的轨迹。(注意:迹是对方阵而言的)

常用性质:

  1. 迹是所有主对角元素的和
  2. 迹是所有特征值的和
  3. 某些时候也利用 T r ( A B ) = T r ( B A ) \mathrm {Tr} (AB) = \mathrm {Tr} (BA) Tr(AB)=Tr(BA)来求迹
  4. T r ( m A + n B ) = m T r ( A ) + n T r ( B ) \mathrm {Tr} (mA+nB) = m\mathrm {Tr} (A) + n\mathrm {Tr} (B) Tr(mA+nB)=mTr(A)+nTr(B),迹是满足线性映射的.
  5. T r ( A A T ) = T r ( A T A ) \mathrm {Tr} (AA^T) = \mathrm {Tr} (A^TA) Tr(AAT)=Tr(ATA)
  6. T r ( A T B ) = T r ( B A T ) = T r ( B T A ) = T r ( A B T ) = ∑ i , j A i , j B i , j \mathrm {Tr} (A^TB) = \mathrm {Tr} (BA^T) = \mathrm {Tr} (B^TA)= \mathrm {Tr} (AB^T)=\sum_{i,j}A_{i,j}B_{i,j} Tr(ATB)=Tr(BAT)=Tr(BTA)=Tr(ABT)=i,jAi,jBi,j
  7. 矩阵乘积的迹 T r ( A B C ) = T r ( C B A ) = T r ( B C A ) \mathrm {Tr} (ABC) = \mathrm {Tr} (CBA) = \mathrm {Tr} (BCA) Tr(ABC)=Tr(CBA)=Tr(BCA)
  8. T r ( P − 1 A P ) = T r ( P − 1 ( A P ) ) = T r ( ( A P ) P − 1 ) = T r ( A ( P P − 1 ) ) = T r ( A ) \mathrm {Tr} (P^{-1} AP) = \mathrm {Tr} (P^{-1} (AP)) = \mathrm {Tr} ((AP)P^{-1} )= \mathrm {Tr} (A(PP^{-1})) = \mathrm {Tr} (A) Tr(P1AP)=Tr(P1(AP))=Tr((AP)P1)=Tr(A(PP1))=Tr(A)

基本求导法则:

  1. d X T d X = d X d X T = E \frac{\mathrm {d} X^T}{\mathrm {d}X} = \frac{\mathrm {d}X}{\mathrm {d}X^T} = \mathrm {E} dXdXT=dXTdX=E
  2. d ( A X ) T d X = A T \frac{\mathrm {d} (AX)^T}{\mathrm {d}X} = A^T dXd(AX)T=AT
  3. d ( A X ) d X T = A \frac{\mathrm {d} (AX)}{\mathrm {d}X^T} = A dXTd(AX)=A
  4. d ( X T X ) d X = 2 X \frac{\mathrm {d} (X^TX)}{\mathrm {d}X} = 2X dXd(XTX)=2X
  5. d ( X T A X ) d X = ( A + A T ) X \frac{\mathrm {d} (X^TAX)}{\mathrm {d}X} = (A+A^T)X dXd(XTAX)=(A+AT)X

参考 矩阵的迹和导数的主要性质

奇异值分解(Singular value decomposition )

奇异值分解非常有用,对于矩阵 A ( p × q ) A (p \times q) A(p×q),存在 U ( p × p ) , V ( q × q ) , B ( p × q ) U(p \times p),V(q \times q),B(p \times q) U(p×p)V(q×q)B(p×q)(由对角阵与增广行或列组成),满足 A = U B V A = UBV A=UBV, U U U V V V 中分别是 A A A 的奇异向量,而 B B B A A A 的奇异值。 A A ′ AA' AA 的特征向量组成 U U U,特征值组成 B T B B^TB BTB A T A A^TA ATA 的特征向量组成 V V V,特征值(与 A A T AA^T AAT 相同)组成 B B T BB^T BBT。因此,奇异值分解和特征值问题紧密联系。

如果 A A A 是复矩阵, B B B 中的奇异值仍然是实数。

SVD 提供了一些关于 A A A 的信息,例如非零奇异值的数目( B B B 的阶数)和 A A A 的阶数相同,一旦阶数确定,那么 U U U 的前 k k k 列构成了 A A A 的列向量空间的正交基。

待补充

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值