wandb
# create a new project in wandb
run = wandb.init(project='GreatBarrierReef', name='DataUnderstanding', config=CONFIG, anonymous="allow")
YoloV5模型 放在 yolov5-master 文件夹
yaml文件可以放在 yolov5-master/data
yaml格式
names:
- cots
nc: 1
path: ../kaggle/working
train: train_images.txt
val: test_images.txt
这两个TXT都在../kaggle/working下。
Yolo在train的时候,参数注意:
--project GreatBarrierReef --name GreatBarrierRee_sample
project和name不填的话,默认出来的结果会在yolov5-master/runs/train中,wandb也会默认在yolov5 project里
weights文件夹包含best.pt(做detect时用这个)和last.pt(最后一次训练模型)
网址收藏
github
https://github.com/ultralytics/yolov5/issues/36
🐡GreatBarrierReef: Full Guide to BBoxAugmentation | KaggleExplore and run machine learning code with Kaggle Notebooks | Using data from multiple data sourceshttps://www.kaggle.com/andradaolteanu/greatbarrierreef-full-guide-to-bboxaugmentationTensorFlow - Help Protect the Great Barrier Reef | KaggleDetect crown-of-thorns starfish in underwater image data
https://www.kaggle.com/c/tensorflow-great-barrier-reef/data?select=train.csvGreat-Barrier-Reef: YOLOv5 [train] 🌊 | Kaggle
https://www.kaggle.com/awsaf49/great-barrier-reef-yolov5-trainYOLOv5 | Kaggle
https://www.kaggle.com/ultralytics/yolov5🐡GreatBarrierReef: YOLO Full Guide [train+infer] | Kaggle
https://www.kaggle.com/andradaolteanu/greatbarrierreef-yolo-full-guide-train-infer/notebook