【评估指标】分类评估指标之混淆矩阵与ROC/AUC曲线

本文介绍了分类模型的评估指标,包括混淆矩阵中的查准率、查全率和F1-Score,并详细讲解了ROC/AUC曲线的含义,强调其作为评估标准的重要性。ROC曲线的横轴为假正例率(FPR),纵轴为真正例率(TPR),AUC面积越大,模型性能越好。
摘要由CSDN通过智能技术生成

混淆矩阵相关知识:

TP:正确判为P
FP:错误判为P
TN:正确判为N
FN:错误判为N
  1. Precision(查准率): P r e c i s i o n = T P T P + F P Precision = \frac {TP}{TP + FP} Precision=TP+F
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不停下脚步的乌龟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值