【x与y的非线性关系】回归,自变量,自变量的平方项,自变量的二次项

本文探讨了在数据分析中研究x与y非线性关系的场景,例如喝水量与身体健康的关系。指出自变量的平方项显著并不一定意味着U型或倒U型关系,解释了如何解读包含一次项和二次项的回归模型,以及如何分析自变量对因变量的边际影响。同时,讨论了拐点的重要性、一次项与二次项同号的含义,以及多重共线性问题在模型构建中的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考资料:连享会《平方项 = 倒U型 ?》(文章链接
该文章为自学总结,大佬请忽视

1. 什么情况下要研究x与y的非线性关系?

  1. 假设我们要研究:喝水越多身体越健康吗?
  2. 在这里,喝水量为自变量,身体健康度(假设有该指标)为因变量。
  3. 常识告诉我们,适当喝水有益于身体健康,但是一旦饮水过度,反而会导致水中毒,损害身体健康。
  4. 所以,喝水量(x)对身体健康度(y)的影响并不是线性的,而是呈倒“U”状:随着x的增加,y先增加后减少。
  5. 综上,便是我们为什么在一些回归模型中看到某个自变量 x x x x 2 x^2 x2同时出现:
    y = a + b x + c x 2 ( 1 ) y = a + bx + cx^2 (1) y=a+bx+cx21
    一句话来说——这种情况通常是要研究 x x x y y y的非线性关系

2. 自变量平方项显著并不意味着x与y呈U型关系

  1. 公式1中平方项系数c显著,并不能断言x与y呈U型关系( c > 0 c>0 c>0)或倒U型关系( c < 0 c<0 c<0
  2. 在现实问题的研究中,我们必须考虑自变量x的取值范围。如研究年龄与收入的非线性关系,自变量年龄则不能为负,在该问题中甚至需要大于18岁。
  3. 基于第2点,再考虑x的取值范围与U型曲线拐点的位置,很可能我们研究的问题只处在U型曲线的一侧,此时,x与y的关系还是单调的,只是x对y的边际影响在递增或递减。

3. 对于包含自变量及其二次项的回归模型的解读

  1. 仍以收入与食物消费的关系为例,假设二者回归模型为:
    y ^ = 0.910 + 0.122 x − 0.006 x 2 ( 2 ) \hat{y}=0.910+0.122x-0.006x^2(2) y^=0.910+0.122x0.006x22
  2. 公式2中0.122是线性关系系数,0.006是非线性关系系数
  3. 线性关系系数为正,说明随着x的增加,y也随之增加
  4. 二次项系数为负。说明随着x的增加,y又会随之减少
  5. 对两个系数取绝对值,由于一次项系数0.122大于二次项系数0.006,所以当x较小时,线性关系占主导作用,此时y随x增加而增加
  6. 但是,当x比较大的时候,受到平方项的加持,平方项系数会开始占主导,此时y随x的增加而减小

4. 关于拐点的注意事项

  1. 由公式1可知,当x与y呈U型关系时,存在拐点: x = − b
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不停下脚步的乌龟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值