SVM 代码实现

# -*- coding: utf-8 -*-
"""
 @File    : SVM.py
 @Software: PyCharm
"""
import numpy as np
# import pandas as pd
from scipy.optimize import fmin_l_bfgs_b
from scipy.optimize import fmin_tnc
# from scipy.optimize import fmin_bfgs
import matplotlib.pyplot as plt
import matplotlib
from matplotlib.patches import Circle

matplotlib.rcParams['font.family'] = 'SimHei'  # 用来正常显示中文
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号


# 定义目标函数,w是未知数据,args是已知数,求w的最优解
def func(w, *args):
    X, Y, c = args
    yp = np.dot(X, w)  # w*x,注意已经将b作为x的第一列进行了计算,w*x就是我们现在预测的y
    idx = np.where(yp * Y < 1)[0]  # 找到分错的数据索引位置
    e = yp[idx] - Y[idx]  # y预测值-y真实值,误差
    cost = np.dot(e, e) + c * np.dot(w, w)  # 平方和损失,c:学习率,加w的二范式惩罚
    grand = 2 * (np.dot(X[idx].T, e) + c * w)  # 梯度下降??
    return cost, grand


def plotResult(w):
    margin = 2 / np.sqrt(np.dot(w[1:3], w[1:3]))
    plot_x = np.append(np.min(x, 0)[0] - 0.2, np.max(x, 0)[0] + 0.2)
    plot_y = -(plot_x * w[1] + w[0]) / w[2]
    plt.figure()
    pos = (Y == 1)  # 正类
    neg = (y == -1)  # 负类
    plt.plot(x[pos][:, 0], x[pos][:, 1], "r+", label="正类")
    plt.plot(x[neg][:, 0], x[neg][:, 1], "bo", label="负类")
    plt.plot(plot_x, plot_y, "r-", label="分割超平面")
    plt.plot(plot_x, plot_y + margin / 2, "g-.", label="")
    plt.plot(plot_x, plot_y - margin / 2, "g-.", label="")
    plt.xlabel('x1')
    plt.ylabel('x2')
    plt.title('SVM Demo')
    plt.legend()
    plt.show()


# 简易smo算法开始####################################################################
# 随机选择第2个alpha
def selectJrand(i, m):
    j = i  # we want to select any J not equal to i
    while (j == i):
        j = int(np.random.uniform(0, m))
    return j


# 调整大于H或小于L的alpha值
def clipAlpha(aj, H, L):
    if aj > H:
        aj = H
    if L > aj:
        aj = L
    return aj


# 公共函数,根据公式求w,简易smo算法及完整smo算法通用
def calcWs(alphas, dataArr, labelArr):
    w = sum(np.array(alphas) * np.array(labelArr.reshape((-1, 1))) * np.array(np.array(dataArr)))
    return w


# 输入变量:x、y、c:常数c、toler:容错率、maxIter:最大循环次数
def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
    # dataMatIn, classLabels, C, toler, maxIter=dataArr,lableArr,0.6,0.001,40
    dataMatrix = np.mat(dataMatIn)  # 数据x转换为matrix类型
    labelMat = np.mat(classLabels).transpose()  # 标签y转换为matrix类型,转换为一列
    b = 0  # 截距b
    m, n = np.shape(dataMatrix)  # 数据x行数、列数
    alphas = np.mat(np.zeros((m, 1)))  # 初始化alpha,有多少行数据就产生多少个alpha
    iter = 0  # 遍历计数器
    while (iter < maxIter):
        # print( "iteration number: %d" % iter)
        alphaPairsChanged = 0  # 记录alpha是否已被优化,每次循环都重置
        for i in range(m):  # 按行遍历数据,类似随机梯度下降
            # i=0
            fXi = float(np.multiply(alphas, labelMat).T * (
                        dataMatrix * dataMatrix[i, :].T)) + b  # 预测值y,g(x)函数,《统计学习方法》李航P127,7.104
            Ei = fXi - float(labelMat[i])  # if checks if an example violates KKT conditions  # 误差,Ei函数,P127,7.105
            if ((labelMat[i] * Ei < -toler) and (alphas[i] < C)) or ((labelMat[i] * Ei > toler) and (alphas[i] > 0)):
                # 找第一个alphas[i],找到第一个满足判断条件的,判断负间隔or正间隔,并且保证0<alphas<C
                j = selectJrand(i, m)  # 随机找到第二个alphas[j]
                fXj = float(np.multiply(alphas, labelMat).T * (dataMatrix * dataMatrix[j, :].T)) + b  # 计算预测值
                Ej = fXj - float(labelMat[j])  # 计算alphas[j]误差
                alphaIold = alphas[i].copy()  # 记录上一次alphas[i]值
                alphaJold = alphas[j].copy()  # 记录上一次alphas[j]值
                if (labelMat[i] != labelMat[j]):  # 计算H及L值,《统计学习方法》李航,P126
                    L = max(0, alphas[j] - alphas[i])
                    H = min(C, C + alphas[j] - alphas[i])
                else:
                    L = max(0, alphas[j] + alphas[i] - C)
                    H = min(C, alphas[j] + alphas[i])
                if L == H:
                    # print( "L==H")
                    continue
                eta = 2.0 * dataMatrix[i, :] * dataMatrix[j, :].T - dataMatrix[i, :] * dataMatrix[i, :].T - dataMatrix[
                                                                                                            j,
                                                                                                            :] * dataMatrix[
                                                                                                                 j, :].T
                # 《统计学习方法》李航P127,7.107,这里的eta与李航的一致,这里乘了负号
                if eta >= 0:
                    # print("eta>=0")
                    continue
                alphas[j] -= labelMat[j] * (Ei - Ej) / eta  # 《统计学习方法》李航P127,7.107,更新alphas[j]
                alphas[j] = clipAlpha(alphas[j], H, L)  # alphas[j]调整大于H或小于L的alpha值
                if (abs(alphas[j] - alphaJold) < 0.00001):  # 调整后过小,则不更新alphas[i]
                    # print( "j not moving enough")
                    continue
                alphas[i] += labelMat[j] * labelMat[i] * (alphaJold - alphas[j])  # 更新alphas[i],《统计学习方法》李航P127,7.109
                # 更新b值,《统计学习方法》李航P130,7.115,7.116
                b1 = b - Ei - labelMat[i] * (alphas[i] - alphaIold) * dataMatrix[i, :] * dataMatrix[i, :].T - labelMat[
                    j] * (alphas[j] - alphaJold) * dataMatrix[i, :] * dataMatrix[j, :].T
                b2 = b - Ej - labelMat[i] * (alphas[i] - alphaIold) * dataMatrix[i, :] * dataMatrix[j, :].T - labelMat[
                    j] * (alphas[j] - alphaJold) * dataMatrix[j, :] * dataMatrix[j, :].T
                if (0 < alphas[i]) and (C > alphas[i]):  # 判断符合条件的b
                    b = b1
                elif (0 < alphas[j]) and (C > alphas[j]):
                    b = b2
                else:
                    b = (b1 + b2) / 2.0
                alphaPairsChanged += 1
                # print( "iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
        if (alphaPairsChanged == 0):
            iter += 1
        else:
            iter = 0
    return b, alphas


# 画图
def plot_smoSimple(dataArrWithAlpha, b, w):
    type1_x1 = []
    type1_x2 = []
    type2_x1 = []
    type2_x2 = []
    dataSet = dataArrWithAlpha
    # 取两类x1及x2值画图
    type1_x1 = dataSet[dataSet[:, -2] == -1][:, :-2][:, 0].tolist()
    type1_x2 = dataSet[dataSet[:, -2] == -1][:, :-2][:, 1].tolist()
    type2_x1 = dataSet[dataSet[:, -2] == 1][:, :-2][:, 0].tolist()
    type2_x2 = dataSet[dataSet[:, -2] == 1][:, :-2][:, 1].tolist()

    # 画点
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(type1_x1, type1_x2, marker='s', s=90)
    ax.scatter(type2_x1, type2_x2, marker='o', s=50, c='red')
    plt.title('Support Vectors Circled')

    # 获取支持向量值,画椭圆
    dataVectors = dataArrWithAlpha[dataArrWithAlpha[:, -1] > 0]
    for d in dataVectors:
        circle = Circle(d[0:2], 0.5, facecolor='none', edgecolor=(0, 0.8, 0.8), linewidth=3, alpha=0.5)
        ax.add_patch(circle)

    # 画分割超平面
    b = b1.getA()[0][0]  # 获得传入的b
    w0 = w[0]  # 0.8065
    w1 = w[1]  # -0.2761
    x = np.arange(-2.0, 12.0, 0.1)
    y = (-w0 * x - b) / w1
    ax.plot(x, y)
    ax.axis([-2, 12, -8, 6])
    plt.show()


# 简易smo算法结束####################################################################

# 完整smo算法开始####################################################################
class optStruct:
    def __init__(self, dataMatIn, classLabels, C, toler, kTup):  # Initialize the structure with the parameters
        self.X = dataMatIn
        self.labelMat = classLabels
        self.C = C
        self.tol = toler
        self.m = np.shape(dataMatIn)[0]
        self.alphas = np.mat(np.zeros((self.m, 1)))
        self.b = 0
        self.eCache = np.mat(np.zeros((self.m, 2)))  # first column is valid flag
        self.K = np.mat(np.zeros((self.m, self.m)))
        for i in range(self.m):
            self.K[:, i] = kernelTrans(self.X, self.X[i, :], kTup)


# 核函数
def kernelTrans(X, A, kTup):  # calc the kernel or transform data to a higher dimensional space
    m, n = np.shape(X)
    K = np.mat(np.zeros((m, 1)))
    if kTup[0] == 'lin':
        K = X * A.T  # linear kernel
    elif kTup[0] == 'rbf':
        for j in range(m):
            deltaRow = X[j, :] - A
            K[j] = deltaRow * deltaRow.T
        K = np.exp(K / (-1 * kTup[1] ** 2))  # divide in NumPy is element-wise not matrix like Matlab
    else:
        raise NameError('Houston We Have a Problem -- \
    That Kernel is not recognized')
    return K


# 计算误差
def calcEk(oS, k):
    fXk = float(np.multiply(oS.alphas, oS.labelMat).T * oS.K[:, k] + oS.b)
    Ek = fXk - float(oS.labelMat[k])
    return Ek


# 寻找第2个步长最大的alphas[j]
def selectJ(i, oS, Ei):  # this is the second choice -heurstic, and calcs Ej
    maxK = -1;
    maxDeltaE = 0;
    Ej = 0
    oS.eCache[i] = [1, Ei]  # set valid #choose the alpha that gives the maximum delta E
    validEcacheList = np.nonzero(oS.eCache[:, 0].A)[0]
    if (len(validEcacheList)) > 1:
        for k in validEcacheList:  # loop through valid Ecache values and find the one that maximizes delta E
            if k == i: continue  # don't calc for i, waste of time
            Ek = calcEk(oS, k)
            deltaE = abs(Ei - Ek)
            if (deltaE > maxDeltaE):
                maxK = k;
                maxDeltaE = deltaE;
                Ej = Ek
        return maxK, Ej
    else:  # in this case (first time around) we don't have any valid eCache values
        j = selectJrand(i, oS.m)
        Ej = calcEk(oS, j)
    return j, Ej


# 计算误差存入缓存中
def updateEk(oS, k):  # after any alpha has changed update the new value in the cache
    Ek = calcEk(oS, k)
    oS.eCache[k] = [1, Ek]


# 内循环,寻找第2个步长最大的alphas[j]
def innerL(i, oS):
    Ei = calcEk(oS, i)
    if ((oS.labelMat[i] * Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or (
            (oS.labelMat[i] * Ei > oS.tol) and (oS.alphas[i] > 0)):
        j, Ej = selectJ(i, oS, Ei)  # this has been changed from selectJrand
        alphaIold = oS.alphas[i].copy();
        alphaJold = oS.alphas[j].copy();
        if (oS.labelMat[i] != oS.labelMat[j]):
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])
        if L == H:
            # print ("L==H")
            return 0
        eta = 2.0 * oS.K[i, j] - oS.K[i, i] - oS.K[j, j]  # changed for kernel
        if eta >= 0:
            # print( "eta>=0")
            return 0
        oS.alphas[j] -= oS.labelMat[j] * (Ei - Ej) / eta
        oS.alphas[j] = clipAlpha(oS.alphas[j], H, L)
        updateEk(oS, j)  # added this for the Ecache
        if (abs(oS.alphas[j] - alphaJold) < 0.00001):
            # print( "j not moving enough")
            return 0
        oS.alphas[i] += oS.labelMat[j] * oS.labelMat[i] * (alphaJold - oS.alphas[j])  # update i by the same amount as j
        updateEk(oS, i)  # added this for the Ecache                    #the update is in the oppostie direction
        b1 = oS.b - Ei - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, i] - oS.labelMat[j] * (
                    oS.alphas[j] - alphaJold) * oS.K[i, j]
        b2 = oS.b - Ej - oS.labelMat[i] * (oS.alphas[i] - alphaIold) * oS.K[i, j] - oS.labelMat[j] * (
                    oS.alphas[j] - alphaJold) * oS.K[j, j]
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]):
            oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]):
            oS.b = b2
        else:
            oS.b = (b1 + b2) / 2.0
        return 1
    else:
        return 0


# SMO主函数
def smoP(dataMatIn, classLabels, C, toler, maxIter, kTup=('lin', 0)):  # full Platt SMO
    oS = optStruct(np.mat(dataMatIn), np.mat(classLabels).transpose(), C, toler, kTup)
    iter = 0
    entireSet = True;
    alphaPairsChanged = 0
    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
        alphaPairsChanged = 0
        if entireSet:  # go over all
            for i in range(oS.m):
                alphaPairsChanged += innerL(i, oS)
                # print( "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
            iter += 1
        else:  # go over non-bound (railed) alphas
            nonBoundIs = np.nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i, oS)
                # print( "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
            iter += 1
        if entireSet:
            entireSet = False  # toggle entire set loop
        elif (alphaPairsChanged == 0):
            entireSet = True
        # print( "iteration number: %d" % iter)
    return oS.b, oS.alphas


# 测试Rbf数据
def testRbf(dataArrTrain, labelArrTrain, dataArrTest, labelArrTest, k1=1.3):
    b, alphas = smoP(dataArrTrain, labelArrTrain, 200, 0.0001, 10000, ('rbf', k1))  # C=200 important
    datMat = np.mat(dataArrTrain);
    labelArrTrain = np.mat(labelArrTrain).transpose()
    svInd = np.nonzero(alphas.A > 0)[0]
    sVs = datMat[svInd]  # get matrix of only support vectors
    labelSV = labelArrTrain[svInd];
    # print( "there are %d Support Vectors" % np.shape(sVs)[0])
    m, n = np.shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs, datMat[i, :], ('rbf', k1))
        predict = kernelEval.T * np.multiply(labelSV, alphas[svInd]) + b
        if np.sign(predict) != np.sign(labelArrTrain[i]): errorCount += 1
    print("the training error rate is: %f" % (float(errorCount) / m))
    errorCount = 0
    datMat = np.mat(dataArrTest)
    # labelMat = np.mat(labelArrTest).transpose()
    m, n = np.shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs, datMat[i, :], ('rbf', k1))
        predict = kernelEval.T * np.multiply(labelSV, alphas[svInd]) + b
        if np.sign(predict) != np.sign(labelArrTest[i]): errorCount += 1
    print("the test error rate is: %f" % (float(errorCount) / m))
    return b, alphas


# 画图,rbf核函数数据
def plot_smoCompletion():
    xcord0 = [];
    ycord0 = [];
    xcord1 = [];
    ycord1 = []
    fw = open('D:/python_data/testSetRBF2.txt', 'w')  # generate data
    fig = plt.figure()
    ax = fig.add_subplot(111)
    xcord0 = [];
    ycord0 = [];
    xcord1 = [];
    ycord1 = []
    for i in range(100):
        [x, y] = np.random.uniform(0, 1, 2)
        xpt = x * np.cos(2.0 * np.pi * y);
        ypt = x * np.sin(2.0 * np.pi * y)
        if (x > 0.5):
            xcord0.append(xpt);
            ycord0.append(ypt)
            label = -1.0
        else:
            xcord1.append(xpt);
            ycord1.append(ypt)
            label = 1.0
        fw.write('%f\t%f\t%f\n' % (xpt, ypt, label))
    ax.scatter(xcord0, ycord0, marker='s', s=90)
    ax.scatter(xcord1, ycord1, marker='o', s=50, c='red')
    plt.title('Non-linearly Separable Data for Kernel Method')
    plt.show()
    fw.close()


# 完整smo算法结束####################################################################

if __name__ == '__main__':
    ##1、SVM直接求参数值#############################################################
    print('\n1、SVM直接求参数值,开始')
    # 生成数据,《统计学习方法》李航,P103,例7.1
    dataSet = np.array([[3, 3, 1], [4, 3, 1], [1, 1, -1]])  # ,[0,0,-1],[0,1,-1]
    m, n = dataSet.shape
    x = dataSet[:, :-1]
    y = dataSet[:, -1]  # .reshape((-1,1))
    # 数据定义
    X = np.append(np.ones([x.shape[0], 1]), x, 1)  # x新增一列全1值,作为截距b
    Y = y
    c = 0.001  # 学习率
    w = np.zeros(X.shape[1])  # 初始化一组w系数,全0,也可随机产生:np.random.rand(X.shape[1])
    # bfgs_b方法求最优化问题
    REF = fmin_l_bfgs_b(func, x0=w, args=(X, Y, c), approx_grad=False)  # x0=np.random.rand(X.shape[1]) [0,0,0]
    # 采用scipy.optimize其他包夜可以求得
    REF2 = fmin_tnc(func, x0=w, args=(X, Y, c), approx_grad=False)
    # 求得最优化计算后的w
    w = REF[0].round(2)  # 取得w值
    print('w:', w[1:], 'b:', w[0])  # 与《统计学习方法》李航,P103,例7.1计算结果一致
    # 画图
    plotResult(w)
    print('\n1、SVM直接求参数值,结束')

    ##2、SVM简易SMO算法#############################################################
    print('\n2、SVM简易SMO算法,开始')
    fileIn = 'D:/python_data/testSet.txt'
    # dataSet=pd.read_table(fileIn,names=['x1','x2','y']).values
    dataSet = np.loadtxt(fileIn)
    dataArr = dataSet[:, :-1]  # x
    labelArr = dataSet[:, -1]  # y
    b1, alphas1 = smoSimple(dataArr, labelArr, 0.6, 0.001, 50)  # 输入变量:x、y、c:常数c、toler:容错率、maxIter:最大循环次数
    dataArrWithAlpha1 = np.array(np.concatenate((dataSet, alphas1), axis=1))  # 把alphas1与原始数据合并
    w1 = calcWs(alphas1, dataArr, labelArr)  # 根据alpha求w
    print('b:', b1, '\nw:', w1, '\ndata,alphas,支撑向量:\n', dataArrWithAlpha1[
        dataArrWithAlpha1[:, -1] > 0])  # 注意这里的筛选方式与pd.DataFrame筛选方式一致,array类型的才可以这样写,np.ndarray及np.matrix类型不可以使用
    plot_smoSimple(dataArrWithAlpha1, b1, w1)  # 画图
    print('2、SVM简易SMO算法,结束')

    ##3、SVM完整SMO算法#############################################################
    print('\n3、SVM完整SMO算法,开始')
    dataSetTrain = np.loadtxt('D:/python_data/testSetRBF.txt')
    dataSetTest = np.loadtxt('D:/python_data/testSetRBF2.txt')
    # 训练集
    dataArrTrain = dataSetTrain[:, :-1]  # 训练集x
    labelArrTrain = dataSetTrain[:, -1]  # 训练集y
    # 测试集
    dataArrTest = dataSetTest[:, :-1]  # 测试集x
    labelArrTest = dataSetTest[:, -1]  # 测试集y
    # 调用主函数
    b2, alphas2 = testRbf(dataArrTrain, labelArrTrain, dataArrTest, labelArrTest, k1=1.3)
    w2 = calcWs(alphas2, dataArrTrain, labelArrTrain)  # 根据alpha求w
    dataArrWithAlpha2 = np.array(np.concatenate((dataSetTrain, alphas2), axis=1))  # 把alphas1与原始数据合并
    print('b:', b1, '\nw:', w1, '\ndata,alphas,支撑向量:\n', dataArrWithAlpha2[
        dataArrWithAlpha2[:, -1] > 0])  # 注意这里的筛选方式与pd.DataFrame筛选方式一致,array类型的才可以这样写,np.ndarray及np.matrix类型不可以使用
    plot_smoCompletion()  # 画图,训练集

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值