分治法 —— 棋盘覆盖

题目描述

在一个2k x 2k ( 即:2^k x 2^k )个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为一特殊方格,且称该棋盘为一特殊棋盘。在棋盘覆盖问题中,要用图示的4种不同形态的L型骨牌覆盖给定的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖。
图片未加载请刷新
输入
输入文件第一行为整数k,(棋盘大小是2k*2k 1<=k<=10),第二行是两个整数,代表特殊方格所在行号和列号。
输出
特殊点用0输出,数据间用制表符隔开(‘t’), 要求遍历顺序按从左到右,从上到下。具体看样例

样例的输入与输出 题目链接 - 棋盘覆盖

讲解

题意是在( 2 ^ k * 2 ^k )的棋盘上有一个特殊的棋子,请问需要多少个L型骨牌才能将整个棋盘覆盖完毕(L型骨牌有4个任选一个即可)

我们可以知道
(2 * 2 - 1 = 3 ) ( 4 * 4 - 1 = 15 )( 8 * 8 - 1 = 63 ) (16 * 16 - 1 = 255 )
可以发现完整的2^k * 2 ^k 的棋盘去掉一个特殊棋子,总可以用n个L型骨牌覆盖完毕!
图片未加载请刷新
我以 2 ^ 3 * 2 ^ 3为例进行讲解介绍

假如特殊棋子在(5,1)的位置,编号为0

1 首选我们将一个二维棋盘一分为四,横竖两刀相切

2进行分治递归,左上角,右上角,右下角都没有特殊棋子。那么我们假设在左上角44的棋盘的最右下角的棋子为特殊棋子,同理右上角44棋盘的最左下角为特殊棋子,右下角4*4的左上角的为特殊棋子。可以发现这三个棋子刚好组成一个L型骨牌,并编号为1

3依次类推,我们发现一个8*8的带有一个特殊棋子的棋盘可以分为 4 个 4 *4 带有一个特殊棋子的棋盘,同理 一个4 * 4的棋盘可以分为 4 个 2 * 2的带有一个特殊棋子的棋盘

可以发现大规模问题和小规模问题一模一样,我们可以将大规模问题转化小规模问题。即分治思想

我相信你看到这基本知道该题的算法思路啦!但问题是如何写递归来体现分治的思想???(如何写好递归也是一个麻烦事)

Code

此处代码解释以 8 * 8 为例

#include <stdio.h>
#include <math.h>

int a[1100][1100] = {0};//先定义一个二维数组(即棋盘) 并置为 0 
int tile = 0;//用于L型骨牌的编号

//tr, tc 表示每一块棋盘的行列起始位置
//dr,dc 表示特殊棋子在二维数组中的行列位置
//每次进入下一层递归请擦亮眼睛看不同位置的(左上角,右上角, 左下角,右下角)
//中的tr, tc, dr, dc ,Size 每层都不一样,即使相同层不同块位置也不同
void ChessBoard(int tr, int tc, int dr, int dc, int Size)
{
    if (Size == 1) return ;//递归结束边界
    int t = ++tile;
    
    int s = Size / 2;//将大规模棋盘8 * 8 分为4个 4 * 4

    //左上角
    if ( dr < tr + s && dc < tc + s  )//如果特殊棋子在左上角,直接进入4 * 4
        ChessBoard(tr, tc, dr, dc, s);
    else {//如果不在左上角,则4 *4 棋盘的右下角设置为特殊棋子,
        a[tr + s - 1][tc + s - 1] = t;//给特殊棋子编号
        ChessBoard(tr, tc, tr + s - 1, tc + s - 1, s);
        //进入递归下一层,传入tr,tc位置以及 特殊棋子的位置编号
    }
    
    //右上角
    if (dr < tr + s && dc >= tc + s )//如果特殊棋子在右上角
        ChessBoard(tr, tc + s, dr, dc, s);
        //进入右上角块,注意 传入的是 tr, tc + s
    else {//如果不在右上角,则4 *4 棋盘的左下角设置为特殊棋子
        a[tr + s - 1][tc + s] = t;
        ChessBoard(tr, tc + s, tr + s - 1, tc + s, s);
   //进入递归下一层,注意传入的是 tr , tc + s, 以及 特殊棋子的位置编号tr+s-1, tc+ s
    }

//-----------------------------------------------
左下角和右下角类似,我只讲节进入4 * 4 的,递归结束肯定是 1 * 1的
后面的递归层其实也很简单,画图即可理解。这里不再赘述
//----------------------------------------------
    //左下角
    if (dr >= tr + s && dc < tc + s )
        ChessBoard(tr + s, tc, dr, dc, s);
    else {
        a[tr + s][tc + s - 1] = t;
        ChessBoard(tr + s, tc, tr + s, tc + s - 1, s);
    }

    //右下角
    if (dr >= tr + s && dc >= tc + s )
        ChessBoard(tr + s, tc + s, dr, dc, s);
    else {
        a[tr + s][tc + s] = t;
        ChessBoard(tr + s, tc + s, tr + s, tc + s, s);
    }

}
void print(int x, int y)//打印函数,按照题目要求打印即可
{
    int i, j;
    for (i = 0; i < x; i++)
    {
        for (j = 0; j < y; j++)
        {
            if (j != y - 1) printf("%d\t", a[i][j]);
            else printf("%d", a[i][j]);
        }
        printf("\n");
    }
}
//主函数
int main()
{
    int k, x, y;
    scanf("%d", &k);//输入棋盘的规模
    scanf("%d %d", &x, &y);//输入真正特殊棋子的位置坐标
    int Size = (int)pow(2, k);
    
    ChessBoard(0, 0, x - 1, y - 1, Size);
    //进入递归函数(因为棋盘是从0开始的,特殊棋子的位置要减1)
    
    print(Size, Size);
    return 0;
}

说明:

此处分治属于二维面的分治,一分为四
当然我也是在学习的阶段,可能讲解的不是特清晰。

附上视频链接,有兴趣可以看一看来加深理解!!! https://www.bilibili.com/video/BV1o7411Q7GV

©️2020 CSDN 皮肤主题: 岁月 设计师:pinMode 返回首页