其它数学专业课总结

实变函数

开集、闭集

每一点都是内点为开集,每一点是聚点为闭集。

外测度及其性质

E为 R n R^n Rn中一点集,对于一列覆盖E的开区间,这列开区间的体积总和的下确界,称为勒贝格外测度。
非负性、单调性,次可数可加性

可测集、性质

E是可测的,若对于任意一点集T,T的外测度等于T与E的交的外测度,加上T与E的补集的外测度。
可测集的并、交、补都是可测的。

可测函数及其性质

f(x)是定义在可测集E上的函数,如果对于任意的有限实数a,集合为满足f大于a的x,该集合可测
可测集上的连续函数都是可测的
可测函数在其可测集的子集上也是可测的
可测函数在其可测集的并上也是可测的

简单函数

f(x)的定义域可以分为有限个互不相交的可测集,f(x)在每个可测集上都等于某个常数

可测函数和简单函数的关系

f在E上可测,则可以找到一列可测的简单函数,使得收敛于f

叶戈罗夫定理

几乎处处收敛的可测函数列,基本上(去掉任意小的某点集)一致收敛

卢津定理

几乎处处可测的函数是基本上连续的函数

依测度收敛

f n f_{n} fn是一列可测的函数列,如果事先给定一个误差,无论这个误差有多小,使得 ∣ f n − f ∣ |f_{n}-f| fnf大于这个误差的点,随着n的无限增大而趋于0

依测度收敛与收敛的关系

里斯定理:函数列fn依测度收敛于f,则存在子列几乎处处收敛于f
勒贝格定理:

  1. E的测度有限
  2. fn是E上几乎处处有限的可测函数列
  3. fn在E上几乎处处收敛于几乎处处有限的函数f

则fn依测度收敛于f

非负简单函数的勒贝格积分

该简单函数在互不相交的可测集上的常数值,分别乘以这些可测集的测度,再将它们求和

非负可测函数的L积分

小于等于f的简单函数的勒贝格积分,它们组成的集合的上界

一般可测函数的L积分

正部和负部的勒贝格积分有限,则正部和负部的L积分相减为f的L积分


常微分方程

常微分方程

微分方程就是联系自变量、未知函数以及未知函数的某些导数的等式。如果其中的未知函数只与一个自变量有关,则称为常微分方程。

变量可分离方程

形如:
d y d x = f ( x ) g ( y ) \frac{dy}{dx}=f(x)g(y) dxdy=f(x)g(y) M 1 ( x ) N 1 ( y ) d x = M 2 ( x ) N 2 ( y ) d y M_{1}(x)N_{1}(y)dx=M_{2}(x)N_{2}(y)dy M1(x)N1(y)dx=M2(x)N2(y)dy
求解方法:分为0和非0两种情况

齐次方程
两类可化为变量可分离的方程:
第一类:

d y d x = f ( x , y ) \frac{dy}{dx}=f(x,y) dxdy=f(x,y)的右端函数f(x, y)可以改写为 g ( y x ) g(\frac{y}{x}) g(xy),那么称为一阶齐次微分方程。
解法:令 u = y x u=\frac{y}{x} u=xy,则有 d y d x = u + x d u d x \frac{dy}{dx}=u+x\frac{du}{dx} dxdy=u+xdxdu,代入可得 d u d x = g ( u ) − u x \frac{du}{dx}=\frac{g(u)-u}{x} dxdu=xg(u)u,这是一个变量可分离方程。

第二类:

d y d x = f ( a 1 x + b 1 y + c 1 a 2 x + b 2 y + c 2 ) \frac{dy}{dx}=f(\frac{a_1x+b_1y+c_1}{a_2x+b_2y+c_2}) dxdy=f(a2x+b2y+c2a1x+b1y+c1)

一阶线性微分方程

d y d x + p ( x ) y = f ( x ) \frac{dy}{dx}+p(x)y=f(x) dxdy+p(x)y=f(x)如果 f ( x ) = 0 f(x)=0 f(x)=0,则称其为一阶线性齐次方程,如果不为0,称为一阶线性非齐次方程。
解法:先求出一阶线性齐次方程的通解,然后用常数变易法解出一阶线性非齐次特解,齐次通解+非齐次特解=非齐次通解。

伯努利方程

d y d x + p ( x ) y = f ( x ) y n ( n ≠ 0 , 1 ) \frac{dy}{dx}+p(x)y=f(x)y^n \qquad(n\ne0,1) dxdy+p(x)y=f(x)yn(n=0,1)
解法:这是一种非线性得一阶微分方程,但经过适当的变量变换之后,化为一阶线性方程
两端除以 y n y^n yn,得 y − n d y d x + p ( x ) y 1 − n = f ( x ) y^{-n}\frac{dy}{dx}+p(x)y^{1-n}=f(x) yndxdy+p(x)y1n=f(x)再令 x = y 1 − n x=y^{1-n} x=y1n,则可以化成z为未知函数的一阶线性方程。

全微分方程及积分因子

M ( x , y ) d x + N ( x , y ) d y = 0 M(x,y)dx+N(x,y)dy=0 M(x,y)dx+N(x,y)dy=0的左端恰好是一个二元函数U(x, y)的全微分,即 d U ( x , y ) = M ( x , y ) d x + N ( x , y ) d y dU(x,y)=M(x,y)dx+N(x,y)dy dU(x,y)=M(x,y)dx+N(x,y)dy则称第一个式子为全微分方程。
解法: U ( x , y ) = C U(x,y)=C U(x,y)=C全微分方程的通积分。

定理:方程中的 M ( x , y ) , N ( x , y ) M(x, y),N(x,y) M(x,y),N(x,y)在矩形区域上连续可微,则方程是全微分方程的充要条件是: ∂ M ∂ y = ∂ N ∂ x \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} yM=xN

定义:存在连续可微函数u(x, y)不为0,使方程 u ( x , y ) M ( x , y ) d x + u ( x , y ) N ( x , y ) d y = 0 u(x,y)M(x,y)dx+u(x,y)N(x,y)dy=0 u(x,y)M(x,y)dx+u(x,y)N(x,y)dy=0成为全微分方程,我们就把u(x, y)称为积分因子

全微分的充要条件: ∂ μ M ∂ y = ∂ μ N ∂ x \frac{\partial \mu M}{\partial y}=\frac{\partial \mu N}{\partial x} yμM=xμN展开并整理后, N ∂ μ ∂ x − M ∂ μ ∂ y = ( ∂ M ∂ y − ∂ N ∂ x ) μ N\frac{\partial \mu}{\partial x}-M\frac{\partial \mu}{\partial y}=(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x})\mu NxμMyμ=(yMxN)μ方程是不易求解的,但对于特殊情况可以求解。

  1. 1 N ( ∂ M ∂ y − ∂ N ∂ x ) \frac{1}{N}(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}) N1(yMxN)只与x有关
  2. − 1 M ( ∂ M ∂ y − ∂ N ∂ x ) -\frac{1}{M}(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}) M1(yMxN)只与y有关

一阶隐式微分方程

两类可解类型:

  1. F ( x , y ′ ) = 0 ( F ( y , y ′ ) = 0 ) F(x,y')=0\quad (F(y,y')=0) F(x,y)=0(F(y,y)=0)
  2. y = f ( x , y ′ ) ( x = f ( y , y ′ ) ) y=f(x,y')\quad (x=f(y,y')) y=f(x,y)(x=f(y,y))

类型1的特点是方程中不含y或x,类型2的特点是y或者x可以解出。
求解:参数法

几种可降阶的高阶方程

F ( x , y ( k ) , y ( k + 1 ) , . . . , y ( n ) ) = 0 ( k ≥ 1 ) F(x,y^{(k)},y^{(k+1)},...,y^{(n)})=0\quad(k\ge1) F(x,y(k),y(k+1),...,y(n))=0(k1) 特点是方程不显含 y , y ′ , . . . , y ( k − 1 ) . y,y',...,y^{(k-1)}. y,y,...,y(k1).只要令 y ( k ) = z y^{(k)}=z y(k)=z,代入即可将原方程降阶。

F ( y , y ′ , . . . , y ( n ) ) = 0 F(y,y',...,y^{(n)})=0 F(y,y,...,y(n))=0 特点是不显含x,用 y ′ = p y'=p y=p使得方程降低一阶, y ′ ′ = p d p d y y''=p\frac{dp}{dy} y=pdydp

解的存在唯一性定理

定理:如果方程 d y d x = f ( x , y ) y ( x 0 ) = y 0 \frac{dy}{dx}=f(x,y) \\ y(x_0)=y_0 dxdy=f(x,y)y(x0)=y0的右端函数 f ( x , y ) f(x,y) f(x,y)在闭矩形域 R : x 0 − a ≤ x ≤ x 0 + a , y 0 − b ≤ y ≤ y 0 + b R:x_0-a\le x\le x_0+a,y_0-b\le y \le y_0+b R:x0axx0+a,y0byy0+b上满足如下条件:

  1. 在R上连续
  2. 在R上关于变量y满足利普希茨条件,即存在常数N,使得对于R上的任一点 ( x , y ) 和 ( x , y ′ ) (x, y)和(x,y') (x,y)(x,y)有不等式 ∣ f ( x , y ) − f ( x , y ′ ) ∣ ≤ N ∣ y − y ′ ∣ |f(x,y)-f(x,y')|\le N|y-y'| f(x,y)f(x,y)Nyy

则初值问题在区间 x 0 − h 0 ≤ x ≤ x 0 + h 0 x_0-h_0\le x \le x_0+h_0 x0h0xx0+h0上存在唯一解.
其中 h 0 = min ⁡ ( a , b M ) , M = max ⁡ ∣ f ( x , y ) ∣ h_0=\min(a,\frac{b}{M}),M=\max|f(x,y)| h0=min(a,Mb),M=maxf(x,y).

一阶微分方程组
一般形式为: { d y 1 d x = f 1 ( x , y 1 , y 2 , . . . , y n ) d y 2 d x = f 2 ( x , y 1 , y 2 , . . . , y n ) . . . . . . d y n d x = f n ( x , y 1 , y 2 , . . . , y n ) \left \{ \begin{array}{lr} \frac{dy_1}{dx}=f_1(x,y_1,y_2,...,y_n) \\ \frac{dy_2}{dx}=f_2(x,y_1,y_2,...,y_n) \\ ...... \\ \frac{dy_n}{dx}=f_n(x,y_1,y_2,...,y_n) \end{array} \right. dxdy1=f1(x,y1,y2,...,yn)dxdy2=f2(x,y1,y2,...,yn)......dxdyn=fn(x,y1,y2,...,yn)

一阶线性微分方程组
定义: { d y 1 d x = a 11 ( x ) y 1 + a 12 ( x ) y 2 + . . . + a 1 n ( x ) y n + f 1 ( x ) d y 2 d x = a 21 ( x ) y 1 + a 22 ( x ) y 2 + . . . + a 2 n ( x ) y n + f 2 ( x ) . . . . . . d y n d x = a n 1 ( x ) y 1 + a n 2 ( x ) y 2 + . . . + a n n ( x ) y n + f n ( x ) \left \{ \begin{array}{lr} \frac{dy_1}{dx}=a_{11}(x)y_1+a_{12}(x)y_2+...+a_{1n}(x)y_n+f_1(x) \\ \frac{dy_2}{dx}=a_{21}(x)y_1+a_{22}(x)y_2+...+a_{2n}(x)y_n+f_2(x) \\ ...... \\ \frac{dy_n}{dx}=a_{n1}(x)y_1+a_{n2}(x)y_2+...+a_{nn}(x)y_n+f_n(x) \end{array} \right. dxdy1=a11(x)y1+a12(x)y2+...+a1n(x)yn+f1(x)dxdy2=a21(x)y1+a22(x)y2+...+a2n(x)yn+f2(x)......dxdyn=an1(x)y1+an2(x)y2+...+ann(x)yn+fn(x)称为一阶线性微分方程组,如果最右侧的 f i ( x ) f_i(x) fi(x)为0的话,称为一阶线性齐次方程组。

一阶线性齐次方程组的一般理论

定理:线性齐次方程组的任何有限个解的线性组合还是方程的解。
证明:直接代入即可得到

定义:
Φ ( x ) = [ Y 1 ( x ) , Y 2 ( x ) , . . . , Y n ( x ) ] = [ y 11 ( x ) y 12 ( x ) . . . y 1 n ( x ) y 21 ( x ) y 22 ( x ) . . . y 2 n ( x ) . . . y n 1 ( x ) y n 2 ( x ) . . . y n n ( x ) ] \Phi(x)=[Y_1(x),Y_2(x),...,Y_n(x)] \\ =\begin{bmatrix} y_{11}(x) & y_{12}(x) &...& y_{1n}(x) \\ y_{21}(x) & y_{22}(x) &...& y_{2n}(x) \\ ... \\ y_{n1}(x) & y_{n2}(x) &...& y_{nn}(x) \\ \end{bmatrix} Φ(x)=[Y1(x),Y2(x),...,Yn(x)]=y11(x)y21(x)...yn1(x)y12(x)y22(x)yn2(x).........y1n(x)y2n(x)ynn(x)如果这组解是线性无关的,则称此矩阵为基本解矩阵。

定义:朗斯基行列式
W ( x ) = ∣ y 11 ( x ) y 12 ( x ) . . . y 1 n ( x ) y 21 ( x ) y 22 ( x ) . . . y 2 n ( x ) . . . y n 1 ( x ) y n 2 ( x ) . . . y n n ( x ) ∣ W(x) =\begin{vmatrix} y_{11}(x) & y_{12}(x) &...& y_{1n}(x) \\ y_{21}(x) & y_{22}(x) &...& y_{2n}(x) \\ ... \\ y_{n1}(x) & y_{n2}(x) &...& y_{nn}(x) \\ \end{vmatrix} W(x)=y11(x)y21(x)...yn1(x)y12(x)y22(x)yn2(x).........y1n(x)y2n(x)ynn(x)

定理:非齐次方程组的解 Y 1 ( x ) , Y 2 ( x ) , . . . , Y n ( x ) Y_1(x),Y_2(x),...,Y_n(x) Y1(x),Y2(x),...,Yn(x) 线性相关,则W恒等于零。
注:反过来不成立,即W恒等于零,向量组不一定线性相关。

定理:齐次方程组的n个解线性无关的充要条件是它们的朗斯基行列式在任一点上恒不为0

定理:如果 Y 1 ( x ) , Y 2 ( x ) , . . . , Y n ( x ) Y_1(x),Y_2(x),...,Y_n(x) Y1(x),Y2(x),...,Yn(x)是齐次方程的基本解组,则其线性组合 Y ( x ) = C 1 Y 1 ( x ) + C 2 Y 2 ( x ) + . . . + C n Y n ( x ) Y(x)=C_1Y_1(x)+C_2Y_2(x)+...+C_nY_n(x) Y(x)=C1Y1(x)+C2Y2(x)+...+CnYn(x)是齐次方程的通解。

一阶线性非齐次方程组

非齐次通解=齐次通解+非齐次特解

非齐次特解求法:常数变易法

常系数线性微分方程组的解法

定义:常系数线性齐次方程组 d Y d x = A Y \frac{dY}{dx}=AY dxdY=AY其中A是n*n的实常数矩阵

求解:引入非奇异变换Y=TZ,将方程组化为 d Z d x = T − 1 A T Z \frac{dZ}{dx}=T^{-1}ATZ dxdZ=T1ATZ,使 T − 1 A T T^{-1}AT T1AT成为若尔当标准型,根据A的特征根
分三种情况:

  1. A的特征根均是单根
  2. 复特征根共轭成对出现,实部和虚部都是解
  3. 重根

非齐次的求解方法,运用上一节的结论即可

n阶线性微分方程

一般形式: y ( n ) + p 1 ( x ) y ( n − 1 ) + . . . + p n − 1 ( x ) y ′ + p n ( x ) y = f ( x ) y^{(n)}+p_1(x)y^{(n-1)}+...+p_{n-1}(x)y'+p_n(x)y=f(x) y(n)+p1(x)y(n1)+...+pn1(x)y+pn(x)y=f(x)
可以通过令 y ′ = y 1 , y ′ ′ = y 2 , . . . , y ( n − 1 ) = y n − 1 y'=y_1,y''=y_2,...,y^{(n-1)}=y_{n-1} y=y1,y=y2,...,y(n1)=yn1将其转化成一阶方程组。

n阶常系数线性齐次方程解法

一般解法:将其转化成一阶方程组,通过上一章的线性方程组的理论可以求解。

解法:待定系数法,猜想方程的解有形如 y = e λ x y=e^{\lambda x} y=eλx 这种结构,剩下的就将其代入方程中求解 λ \lambda λ,得到特征方程,根据根分三种情况:单根、重根、复数根。

n阶常系数线性非齐次方程解法

一般解法:齐次的上面已经知道求解方法,非齐次特解可用常数变易法求解,二者相加即可得到通解。

第一类型非齐次方程特解的待定系数法: f ( x ) = P m e a x f(x)=P_me^{ax} f(x)=Pmeax
求解:猜想有形如 y = A e a x y=Ae^{ax} y=Aeax的特解,分两种情况:a不是特征方程的根,a是k重根

第二类型非齐次方程特解的待定系数法: f ( x ) = e a x [ P m ( 1 ) ( x ) c o s β x + P m ( 2 ) ( x ) s i n β x ] f(x)=e^{ax}[P_m^{(1)}(x)cos\beta x+P_m^{(2)}(x)sin\beta x] f(x)=eax[Pm(1)(x)cosβx+Pm(2)(x)sinβx]
其中 P m ( 1 ) ( x ) P_m^{(1)}(x) Pm(1)(x) P m ( 2 ) ( x ) P_m^{(2)}(x) Pm(2)(x)是x的次数不高于m的多项式,但二者至少有一个次数为m
求解:可根据欧拉公式,将 cos ⁡ β x \cos\beta x cosβx sin ⁡ β x \sin\beta x sinβx替换,则f(x)可以改成第一类型两个函数相加,再根据叠加原理就可求出。

叠加原理: L [ y ] = f 1 ( x ) + f 2 ( x ) L[y]=f_1(x)+f_2(x) L[y]=f1(x)+f2(x)是非齐次方程最右侧,且 y 1 ( x ) y_1(x) y1(x) y 2 ( x ) y_2(x) y2(x)分别是方程 L [ y ] = f 1 ( x ) L[y]=f_1(x) L[y]=f1(x) L [ y ] = f 2 ( x ) L[y]=f_2(x) L[y]=f2(x)的解,那么 f 1 ( x ) + f 2 ( x ) f_1(x)+f_2(x) f1(x)+f2(x)是原方程的解。


概统

互不相容

两件事情不可能同时发生,即P(AB)=0

相互独立

A发生对B没有影响,但可能同时发生,P(AB)=P(A)P(B)

全概率公式

B 1 , B 2 , . . . B_1,B_2,... B1,B2,...是一列互不相容的事件,且有 ∑ i = 1 + ∞ = Ω P ( B i ) > 0 , i = 1 , 2 , . . . \sum^{+\infty}_{i=1}=\Omega \\ P(B_i)>0,\quad i=1,2,... i=1+=ΩP(Bi)>0,i=1,2,...则对任一事件A,有 P ( A ) = ∑ i = 1 + ∞ P ( B i ) P ( A ∣ B i ) P(A)=\sum^{+\infty}_{i=1}P(B_i)P(A|B_i) P(A)=i=1+P(Bi)P(ABi)这个公式通常称为全概率公式。

贝叶斯公式

B 1 , B 2 , . . . B_1,B_2,... B1,B2,...是一列互不相容的事件,且有 ∑ i = 1 + ∞ = Ω P ( B i ) > 0 , i = 1 , 2 , . . . \sum^{+\infty}_{i=1}=\Omega \\ P(B_i)>0,\quad i=1,2,... i=1+=ΩP(Bi)>0,i=1,2,...则对任一事件A,有 P ( B i ∣ A ) = P ( B i ) P ( A ∣ B ) ∑ j = 1 + ∞ P ( B j ) P ( A ∣ B j ) , i = 1 , 2 , . . . P(B_i|A)=\frac{P(B_i)P(A|B)}{\sum^{+\infty}_{j=1}P(B_j)P(A|B_j)},\qquad i=1,2,... P(BiA)=j=1+P(Bj)P(ABj)P(Bi)P(AB),i=1,2,...
这个公式常称为贝叶斯公式。
用先验概率和后验概率推出某件事情发生的概率。

离散型随机变量

分布列、联合分布列、边际分布

随机变量函数,例如v是个随机变量,w=mv是关于v的函数,我们就要研究w的分布列

数学期望:概率与对应的随机变量的乘积求和,若不是绝对收敛,那么数学期望不存在,因为求和次序可以改变,所以要求绝对收敛。
定理:若 ( ξ , η ) (\xi,\eta) (ξ,η)是一个二维离散型随机变量,其联合分布列为 p i j p_{ij} pij,又g(x, y)是实变量x,y的单值函数,如果 ∑ i = 1 + ∞ ∑ j = 1 + ∞ ∣ g ( a i , b j ) ∣ p i j < + ∞ \sum^{+\infty}_{i=1}\sum^{+\infty}_{j=1}|g(a_i,b_j)|p_{ij}<+\infty i=1+j=1+g(ai,bj)pij<+则有 E g ( ξ , η ) = ∑ i = 1 + ∞ ∑ j = 1 + ∞ g ( a i , b j ) p i j Eg(\xi,\eta)=\sum^{+\infty}_{i=1}\sum^{+\infty}_{j=1}g(a_i,b_j)p_{ij} Eg(ξ,η)=i=1+j=1+g(ai,bj)pij
性质:

  1. EC=C
  2. E ( k 1 ξ + k 2 η ) = k 1 E ξ + k 2 E η E(k_1\xi+k_2\eta)=k_1E\xi+k_2E\eta E(k1ξ+k2η)=k1Eξ+k2Eη
  3. ξ , η \xi,\eta ξ,η相互独立,则 E ( ξ η ) = E ξ ⋅ E η E(\xi\eta)=E\xi\cdot E\eta E(ξη)=EξEη

方差: D ξ = E ( ξ − E ξ ) 2 = E ξ 2 − ( E ξ ) 2 D\xi=E(\xi-E\xi)^2=E\xi^2-(E\xi)^2 Dξ=E(ξEξ)2=Eξ2(Eξ)2
性质:

  1. 若C是常数,则DC=0;
  2. 若C是常数,则 D ( C ξ ) = C 2 D ξ D(C\xi)=C^2D\xi D(Cξ)=C2Dξ;
  3. ξ , η \xi,\eta ξ,η是两个相互独立的随机变量,且 D ξ , D η D\xi,D\eta Dξ,Dη存在,则 D ( ξ + η ) = D ξ + D η D(\xi+\eta)=D\xi+D\eta D(ξ+η)=Dξ+Dη

条件分布与条件数学期望

连续型随机变量

概率分布函数: F ( x ) = P ( ξ ≤ x ) , x ∈ ( − ∞ , + ∞ ) F(x)=P(\xi\le x),\quad x\in(-\infty,+\infty) F(x)=P(ξx),x(,+)
性质:单调性、有界性、右连续性

概率密度函数:如果对于任意的x有, F ( x ) = ∫ + ∞ x p ( y ) d y F(x)=\int_{+\infty}^xp(y)dy F(x)=+xp(y)dy,F(x)为连续型分布函数,p(x)是F(x)的概率密度函数。
性质:

  1. p ( x ) ≥ 0 p(x)\ge0 p(x)0
  2. ∫ − ∞ + ∞ p ( x ) d x = 1 \int_{-\infty}^{+\infty}p(x)dx=1 +p(x)dx=1

多维随机变量:联合分布函数、联合概率密度函数、边际分布、边际分布密度、相互独立

随机变量的函数的分布、和的分布、商的分布

期望:x与密度函数的乘积在负无穷到正无穷上的积分。

切比雪夫不等式:若 E ξ = a E\xi=a Eξ=a,且 D ξ D\xi Dξ存在,则对任意的正常数 ε \varepsilon ε,有 P ( ∣ ξ − a ∣ ≥ ) ≤ D ξ ε 2 P(|\xi-a|\ge)\le\frac{D\xi}{\varepsilon^2} P(ξa)ε2Dξ

协方差: C o v ( ξ , η ) = E ( ξ − E ξ ) ( η − E η ) Cov(\xi,\eta)=E(\xi-E\xi)(\eta-E\eta) Cov(ξ,η)=E(ξEξ)(ηEη)
相关系数: C o v ( ξ ∗ , η ∗ ) = C o v ( ξ , η ) D ξ ⋅ D η Cov(\xi^*,\eta^*)=\frac{Cov(\xi,\eta)}{\sqrt{D\xi\cdot D\eta}} Cov(ξ,η)=DξDη Cov(ξ,η)
注:相关系数只是随机变量间线性关系强弱的一个度量,当两个随机变量独立时,相关系数为0,反之不成立。

条件分布、条件期望

大数定理

伯努利定理: μ \mu μ是n重伯努利实验中事件A出现的次数,p为每个实验出现的概率, lim ⁡ n → + ∞ P ( ∣ μ n n − p ∣ < ε ) = 1 \lim_{n\to +\infty}P(|\frac{\mu_n}{n}-p|<\varepsilon)=1 n+limP(nμnp<ε)=1说明:频率是接近概率的

切比雪夫大数定律、马尔可夫大数定律,分别是前面的推广

辛钦大数定律: ξ 1 , ξ 2 , . . . \xi_1,\xi_2,... ξ1,ξ2,...是一列独立同分布的随机变量,且 E ξ i = a , i = 1 , 2 , . . . E\xi_i=a, i=1,2,... Eξi=a,i=1,2,... lim ⁡ n → + ∞ P ( ∣ 1 n ∑ i = 1 n ξ i − a ∣ < ε ) = 1 \lim_{n\to +\infty}P(|\frac{1}{n}\sum_{i=1}^n\xi_i-a|<\varepsilon)=1 n+limP(n1i=1nξia<ε)=1表明随机变量在n次观察中的算术平均值会靠近它的期望值。

中心极限定理

棣莫弗-拉普拉斯极限定理:二项分布收敛于正态分布

林德贝格-勒维定理:若 ξ 1 , ξ 2 , . . . \xi_1,\xi_2,... ξ1,ξ2,...是一列独立同分布的随机变量,且 E ξ k = a , D ξ k = σ 2 ( σ 2 > 0 ) , k = 1 , 2... E\xi_k=a,D\xi_k=\sigma^2(\sigma^2>0),k=1,2... Eξk=a,Dξk=σ2(σ2>0),k=1,2...则有 lim ⁡ n → + ∞ P ( ∑ k = 1 n ξ k − n a σ n ≤ x ) = 1 2 π ∫ − ∞ x e − t 2 2 d t \lim_{n\to +\infty}P(\frac{\sum_{k=1}^n\xi_k-na}{\sigma\sqrt{n}}\le x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^xe^{-\frac{t^2}{2}}dt n+limP(σn k=1nξknax)=2π 1xe2t2dt是上面的推广

统计量

子样均值、子样方差、子样k阶矩、子样k阶中心矩…

点估计

矩法估计:采用子样的经验分布和子样矩去替换母体的分布和母体矩的原则,称之为替换原则。
体现估计好坏的两个标准:

  1. 相合估计:估计量与真值很接近的可能性非常大
  2. 无偏估计: E θ [ θ ∧ ( ξ 1 , ξ 2 , . . . ) ] = θ E_{\theta}[\mathop{\theta}\limits^{\land}(\xi_1,\xi_2,...)]=\theta Eθ[θ(ξ1,ξ2,...)]=θ,在多次重复取样下不会系统地引起过高或过低的偏差

极大似然估计
似然函数: L ( θ ) = L ( θ ; x 1 , x 2 , . . . , x n ) = f ( x 1 ; θ ) f ( x 2 ; θ ) . . . f ( x n ; θ ) L(\theta)=L(\theta;x_1,x_2,...,x_n)=f(x_1;\theta)f(x_2;\theta)...f(x_n;\theta) L(θ)=L(θ;x1,x2,...,xn)=f(x1;θ)f(x2;θ)...f(xn;θ)
极大似然估计: L ( θ ∧ ; x 1 , x 2 , . . . , x n ) = sup ⁡ L ( θ ; x 1 , x 2 , . . . , x n ) L(\mathop{\theta}\limits^{\land};x_1,x_2,...,x_n)=\sup L(\theta;x_1,x_2,...,x_n) L(θ;x1,x2,...,xn)=supL(θ;x1,x2,...,xn),满足该式的 θ ∧ \mathop{\theta}\limits^{\land} θ就是最可能产生 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn的参数 ξ \xi ξ的值,称其为极大似然估计。

假设检验

一般提法:在给定备择假设 H 1 H_1 H1下对原假设 H 0 H_0 H0作出判断,若拒绝原假设 H 0 H_0 H0,那就意味着接受备择假设 H 1 H_1 H1,否则就不能拒绝原假设 H 0 H_0 H0,也就是接受原假设。简单来说,就是在原假设 H 0 H_0 H0和备择假设 H 1 H_1 H1中作出拒绝哪一个接受哪一个的判断。

犯第一类错误的概率: P ( 拒 绝 H 0 ∣ H 0 为 真 ) = α P(拒绝H_0|H_0为真)=\alpha P(H0H0)=α
犯第二类错误的概率: P ( 接 受 H 0 ∣ H 1 为 真 ) = β P(接受H_0|H_1为真)=\beta P(H0H1)=β
只对犯第一类错误的概率 α \alpha α加以限制,而不考虑犯第二类错误的概率,这种统计假设检验问题称为显著性检验问题


数值分析

多项式插值

定理:满足条件 P ( x i ) = y i , i = 0 , 1 , . . . , n P(x_i)=y_i,\quad i=0,1,...,n P(xi)=yi,i=0,1,...,n的插值多项式P(x)是存在唯一的。
证明:令 P ( x ) = a 0 + a 1 x + . . . + a n x n P(x)=a_0+a_1x+...+a_nx^n P(x)=a0+a1x+...+anxn,将上述条件代入,求解n+1元的线性方程组,我们知道多项式系数存在且唯一

拉格朗日插值

定义:若n次多项式 l j ( x ) l_j(x) lj(x)在n+1个节点上满足 l j ( x k ) = { 1 , k = j 0 , k ≠ j j , k = 0 , 1 , . . , n l_j(x_k)=\left \{ \begin{array}{lr} 1,\quad k=j \\ 0,\quad k\ne j \end{array} \quad j,k=0,1,..,n \right. lj(xk)={1,k=j0,k=jj,k=0,1,..,n称这n+1个多项式为n次插值基函数

拉格朗日插值多项式: L n ( x ) = ∑ k = 0 n y k l k ( x ) L_n(x)=\sum_{k=0}^ny_kl_k(x) Ln(x)=k=0nyklk(x)其中 l k ( x ) = ( x − x 0 ) . . . ( x − x k − 1 ) ( x − x k + 1 ) . . . ( x − x n ) ( x k − x 0 ) . . . ( x k − x k − 1 ) ( x k − x k + 1 ) . . . ( x k − x n ) , k = 0 , 1 , . . . , n l_k(x)=\frac{(x-x_0)...(x-x_{k-1})(x-x_{k+1})...(x-x_n)}{(x_k-x_0)...(x_k-x_{k-1})(x_k-x_{k+1})...(x_k-x_n)},\quad k=0,1,...,n lk(x)=(xkx0)...(xkxk1)(xkxk+1)...(xkxn)(xx0)...(xxk1)(xxk+1)...(xxn),k=0,1,...,n

拉格朗日插值余项: R n ( x ) = f ( x ) − L n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! w n + 1 ( x ) R_n(x)=f(x)-L_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}w_{n+1}(x) Rn(x)=f(x)Ln(x)=(n+1)!f(n+1)(ξ)wn+1(x)其中 w n + 1 = ( x − x 0 ) ( x − x 1 ) . . . ( x − x n ) w_{n+1}=(x-x_0)(x-x_1)...(x-x_n) wn+1=(xx0)(xx1)...(xxn)

牛顿插值多项式

定义:k阶均差 f [ x 0 , x 1 , . . . , x k ] = f [ x 0 , . . . , x k − 2 , x k ] − f [ x 0 , x 1 , . . . , x k − 1 ] x k − x k − 1 f[x_0,x_1,...,x_k]=\frac{f[x_0,...,x_{k-2},x_k]-f[x_0,x_1,...,x_{k-1}]}{x_k-x_{k-1}} f[x0,x1,...,xk]=xkxk1f[x0,...,xk2,xk]f[x0,x1,...,xk1]性质:

  1. 均差与结点的排序无关
  2. f [ x 0 , x 1 , . . . , x k ] = f [ x 1 , x 2 . . . , x k ] − f [ x 0 , x 1 , . . . , x k − 1 ] x k − x 0 f[x_0,x_1,...,x_k]=\frac{f[x_1,x_2...,x_k]-f[x_0,x_1,...,x_{k-1}]}{x_k-x_0} f[x0,x1,...,xk]=xkx0f[x1,x2...,xk]f[x0,x1,...,xk1],由性质1和定义可得
  3. f [ x 0 , x 1 , . . . , x n ] = f ( n ) ( ξ ) n ! , ξ ∈ [ a , b ] f[x_0,x_1,...,x_n]=\frac{f^{(n)}(\xi)}{n!},\quad \xi \in [a,b] f[x0,x1,...,xn]=n!f(n)(ξ),ξ[a,b]

可根据均差定义,将x看成[a, b]上一点,可得
f ( x ) = f ( x 0 ) + f [ x , x 0 ] ( x − x 0 ) , f [ x , x 0 ] = f [ x 0 , x 1 ] + f [ x , x 0 , x 1 ] ( x − x 1 ) , . . . f [ x , x 0 , . . . , x n − 1 ] = f [ x 0 , x 1 , . . . , x n ] + f [ x , x 0 , x 1 , . . . , x n ] ( x − x n ) f(x)=f(x_0)+f[x,x_0](x-x_0), \\ f[x,x_0]=f[x_0,x_1]+f[x,x_0,x_1](x-x_1), \\ ... \\ f[x,x_0,...,x_{n-1}]=f[x_0,x_1,...,x_n]+f[x,x_0,x_1,...,x_n](x-x_n) f(x)=f(x0)+f[x,x0](xx0),f[x,x0]=f[x0,x1]+f[x,x0,x1](xx1),...f[x,x0,...,xn1]=f[x0,x1,...,xn]+f[x,x0,x1,...,xn](xxn)依次把后一式代入前一式,就得到 f ( x ) = f ( x 0 ) + f [ x 0 , x 1 ] ( x − x 0 ) + . . . + f [ x 0 , x 1 , . . . , x n ] ( x − x 0 ) . . . ( x − x n − 1 ) + f [ x , x 0 , x 1 , . . . , x n ] w n + 1 ( x ) = P n ( x ) + R n ( x ) f(x)=f(x_0)+f[x_0,x_1](x-x_0)+...+f[x_0,x_1,...,x_n](x-x_0)...(x-x_{n-1}) \\ +f[x,x_0,x_1,...,x_n]w_{n+1}(x)=P_n(x)+R_n(x) f(x)=f(x0)+f[x0,x1](xx0)+...+f[x0,x1,...,xn](xx0)...(xxn1)+f[x,x0,x1,...,xn]wn+1(x)=Pn(x)+Rn(x)其中 P n ( x ) P_n(x) Pn(x)就是我们的牛顿插值多项式, R n ( x ) R_n(x) Rn(x)相比较拉格朗日插值余项更具有一般性。

埃尔米特插值

埃尔米特插值:插值多项式不仅满足函数值相等,还要满足结点的导数值相等
一般的只要给出m+1个插值条件(含函数值和导数值)就可构造出次数不超过m次的埃尔米特插值多项式

泰勒插值:是牛顿插值的极限形式

分段低次插值

由于高次插值多项式精度不好,通常不用告辞插值,而用分段低次插值
分段线性插值:给出每个结点的函数值
分段三次埃尔米特插值:给出每个结点的函数值和导数值(一阶导数连续)

三次样条插值

优点:改进分段低次插值的光滑性差,有二阶连续导数,并且不需要提供很多条件,一般是结点的函数值加上边界条件即可。
在每个小区间上要确定4个待定系数,因为是三次多项式。
满足连续性条件:

  1. S ( x j − 0 ) = S ( x j + 0 ) S(x_j-0)=S(x_j+0) S(xj0)=S(xj+0)
  2. S ′ ( x j − 0 ) = S ′ ( x j + 0 ) S'(x_j-0)=S'(x_j+0) S(xj0)=S(xj+0)
  3. S ′ ′ ( x j − 0 ) = S ′ ′ ( x j + 0 ) S''(x_j-0)=S''(x_j+0) S(xj0)=S(xj+0)

通常在区间[a, b]端点再加一个边界条件,常见的有以下三种:

  1. 已知两端的一阶导数值
  2. 已知两端的二阶导数值
  3. 周期样条函数

函数逼近

用简单函数逼近已知的复杂函数,上面的插值就是函数逼近的一种,下面要讨论的是“对函数类A中给定的函数f(x),要求在另一类函数B中求函数p(x),使得它们的误差在某种度量意义下最小”。函数A类通常是区间上的连续函数C[a, b],函数B类通常是n次多项式 H n H_n Hn,有理函数或分段低次多项式等。

最佳逼近多项式 ∣ ∣ f ( x ) − P ∗ ( x ) ∣ ∣ = m i n ∣ ∣ f ( x ) − P ( x ) ∣ ∣ ||f(x)-P^*(x)||=min||f(x)-P(x)|| f(x)P(x)=minf(x)P(x)
其中:

  1. 范数取 ∣ ∣ ⋅ ∣ ∣ + ∞ ||\cdot||_{+\infty} +最优一致多项式
  2. 范数取 ∣ ∣ ⋅ ∣ ∣ 2 ||\cdot||_2 2最佳平方多项式
  3. 只知道函数的在某点的函数值,要求 ∣ ∣ f − P ∗ ∣ ∣ 2 2 = min ⁡ ∣ ∣ f − P ∣ ∣ 2 2 = min ⁡ ∑ i = 1 m [ f ( x i ) − P ( x i ) ] 2 ||f-P^*||_2^2=\min||f-P||_2^2=\min\sum_{i=1}^m[f(x_i)-P(x_i)]^2 fP22=minfP22=mini=1m[f(xi)P(xi)]2 P ∗ ( x ) P^*(x) P(x)为f(x)的最小二乘拟合

数值积分

定义:如果某个求积公式对于次数不超过m的多项式均能准确成立,但对于m+1次的多项式不能准确成立,则称该求积公式具有m次代数精度

插值型求积公式:用插值函数的积分近似原函数的积分,具有n次代数精度

辛普森公式:二阶牛顿-柯特斯公式,有三次代数精度

复合求积公式

由于牛顿-柯特斯公式在 n ≥ 8 n\ge8 n8时不具有稳定性,不能通过提高阶的方法提高精度,通常把区间等分,再在每个小区间上用低阶求积公式,这种方法称为复合求积法。

复合梯形公式、复合辛普森公式

解线性方程组的直接解法

高斯消去法:用初等行变换将原线性方程组系数矩阵化为简单形式(上三角形),从而将问题转化为求解简单方程组的问题

定理:矩阵的LU分解,A的顺序主子式不为零,A可分解为一个单位下三角矩阵L和一个上三角矩阵U的乘积,且这种分解是唯一的。

列主元消去法:在消元过程中可能出现 a k k = 0 a_{kk}=0 akk=0或很小,用其作除数会导致其它元素严重增长,最后会使得计算误差较大。为了避免这种情况,我们每一步选取系数矩阵中绝对值最大的元素作为主元素。

直接三角分解法:实现A的LU分解,将求解Ax=b的问题转化为求解两个三角形方程组:

  1. Ly=b,求y
  2. Ux=y,求x

解线性方程组的迭代法
对于低阶稠密矩阵时,上面的方法求解方程是有效的,但对于大型稀疏矩阵,利用迭代法求解是适合的。

建立Ax=b的迭代法。
将A分裂为A=M-N,其中M为可选择的非奇异矩阵,且使Mx=d容易求解,一般选择为A的某种近似,称M为分裂矩阵
于是求解Ax=b转化为求解Mx=Nx+b,即求解 A x = b ⇔ 求 解 x = M − 1 N x + M − 1 b Ax=b\Leftrightarrow 求解 x=M^{-1}Nx+M^{-1}b Ax=bx=M1Nx+M1b
也就是求解线性方程组 x = B x + f x=Bx+f x=Bx+f
从而可构造一阶定常迭代式:
x ( 0 ) ( 初 始 向 量 ) x ( k + 1 ) = B x ( k ) + f , k = 0 , 1 , . . . x^{(0)} \quad (初始向量)\\ x^{(k+1)}=Bx^{(k)}+f,\quad k=0,1,... x(0)()x(k+1)=Bx(k)+f,k=0,1,...迭代收敛的充要条件是矩阵B的谱半径小于1

将系数矩阵A分成三部分
分解
A = D − L − U A=D-L-U A=DLU

雅可比迭代法:选取M=D(对角矩阵)
高斯-塞德尔迭代法:选取M=D-L(下三角矩阵)
逐次超松弛迭代法(SOR方法):M选取带参数的下三角矩阵 M = 1 ω ( D − ω L ) M=\frac{1}{\omega}(D-\omega L) M=ω1(DωL) 其中 ω > 0 \omega>0 ω>0为可选择的松弛因子。

SOR方法是高斯-塞德尔迭代法的一种修正,可由下述思想得到:

  1. 先用高斯-塞德尔迭代法定义辅助量 x i ( k + 1 ) x_i^{(k+1)} xi(k+1)
  2. 再由 x i ( k ) x_i^{(k)} xi(k) x i ( k + 1 ) x_i^{(k+1)} xi(k+1)加权平均定义 X i ( k + 1 ) X_i^{(k+1)} Xi(k+1),即
    X i ( k + 1 ) = ( 1 − ω ) x i ( k ) + ω x i ( k + 1 ) X_i^{(k+1)}=(1-\omega)x_i^{(k)}+\omega x_i^{(k+1)} Xi(k+1)=(1ω)xi(k)+ωxi(k+1)

非线性方程与方程组的数值解法

二分法:考察有根区间 [a, b]

不动点迭代法:
将方程改写成等价的形式 x = φ ( x ) x=\varphi(x) x=φ(x),若 f ( x ∗ ) = 0 f(x^*)=0 f(x)=0,则 x ∗ = φ ( x ∗ ) x^*=\varphi(x^*) x=φ(x),反之亦然,我们称 x ∗ x^* x为函数 φ ( x ) \varphi(x) φ(x)的一个不动点
迭代计算: x k + 1 = φ ( x k ) , k = 0 , 1 , . . . x_{k+1}=\varphi(x_k),\quad k=0,1,... xk+1=φ(xk),k=0,1,...

牛顿法(切线法):实质上是一种线性化方法,其基本思想是将非线性方程逐步归结为某种线性方程来求解。先选取一个根附近的初始值 x 0 x_0 x0,计算公式为:
x k + 1 = x k − f ( x k ) f ′ ( x k ) , k = 0 , 1 , . . . x_{k+1}=x_k-\frac{f(x_k)}{f'(x_k)},\quad k=0,1,... xk+1=xkf(xk)f(xk),k=0,1,...

简化牛顿法: x k + 1 = x k − C f ( x k ) , k = 0 , 1 , . . . x_{k+1}=x_k-Cf(x_k),\quad k=0,1,... xk+1=xkCf(xk),k=0,1,...,取 C = 1 f ′ ( x 0 ) C=\frac{1}{f'(x_0)} C=f(x0)1,不需要每次迭代都计算一次导数。
牛顿下山法:附加要求 ∣ f ( x k + 1 ) ∣ < ∣ f ( x k ) ∣ |f(x_{k+1})|<|f(x_k)| f(xk+1)<f(xk),保证函数值稳定下降,防止发散。

利用已知函数值 f ( x k ) , f ( x k − 1 ) f(x_k),f(x_{k-1}) f(xk),f(xk1)来回避导数值 f ′ ( x k ) f'(x_k) f(xk)的计算,这类方法是建立在插值原理的基础上的,下面是两种常用的方法。
弦截法:构造一次插值多项式,导数 f ′ ( x k ) f'(x_k) f(xk)用差商 f ( x k ) − f ( x k − 1 ) x k − x k − 1 \frac{f(x_k)-f(x_{k-1})}{x_k-x_{k-1}} xkxk1f(xk)f(xk1)替代
抛物线法:构造二次插值多项式

  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值