这篇1区文章的中介分析,解释了一个很重要的现象

本文探讨了英国生物银行参与者中,血管危险因素如何通过降低全球网络效率间接影响认知障碍。研究发现,全球效率在血管负担与认知关系中起部分中介作用,提示干预特定风险因素可能有助于维持认知功能。
摘要由CSDN通过智能技术生成

欢迎报名2023年郑老师团队系列科研统计课程!

2023年郑老师多门科研统计课程:含孟德尔随机化方法

我说过,当研究某一个暴露因素与结局的关系时,如果不讨论中介的直接效应和间接效应时,两者的中介变量是不好纳入回归模型的!今天的主题是中介分析,但其中的数据,证实了我的话。

本文内容包括:

1. 文献解读

2. 统计学方法

3. 闲来郑语

2020年6月,英国剑桥大学学者在《Stroke(1区,IF=8.3发表题为:Network Efficiency Mediates the Relationship Between Vascular Burden and Cognitive Impairment: A Diffusion Tensor Imaging Study in UK Biobank " 的研究论文。

这项研究对19346名接受了弥散性MRI和认知测试的英国生物银行(UK Biobank)参与者进行分析,全局效率是一种网络整合的度量,是通过使用确定性扩散束状图构建的白质网络来计算的。使用多元线性回归确定人口统计学因素、血管危险因素和白质高强度是否与全局效率相关,结构方程模型(SEM)对多元回归进行建模,最后使用中介分析来确定全局效率是否解释了血管负荷与认知之间的关系。结果表明,在一般人群中,血管负担与全局效率降低和认知障碍有关。网络效率在血管负荷与认知的关系中起部分中介作用。

adfa6ccee91b3ade0730f76c28aa49ba.png

摘要与主要结果

一、摘要

目的:脑血管疾病导致与年龄相关的认知能力下降,但这一现象背后的机制尚不完全清楚。我们假设血管危险因素会通过破坏脑白质网络效率导致认知障碍。

方法:参与者是来自UK Biobank的19346名神经健康个体,他们接受了弥散性MRI和认知测试(平均年龄= 62.6)。全局效率是一种网络整合的度量,是通过使用确定性扩散束状图构建的白质网络来计算的。首先,我们使用多元线性回归确定人口统计学(年龄、性别、种族、社会经济地位和教育程度)、血管危险因素(高血压、高胆固醇血症、糖尿病、吸烟、体重指数)和白质高强度(WMH)是否与全局效率相关。接下来,我们使用结构方程模型(SEM)对多元回归进行建模。因变量是使用所有认知数据的潜在认知变量,自变量是包括所有血管危险因素(血管负担)、人口统计学变量、WMH和全局效率在内的潜在因素。最后,我们使用中介分析来确定全局效率是否解释了血管负荷与认知之间的关系。


结果:即使在控制了WMH后,高血压和糖尿病也始终与全局效率降低相关。SEM显示血管负荷与认知相关(P = 0.023),但在模型中加入全局效率后不相关(P = 0.09),表明存在中介效应。中介分析显示,全局效率通过血管负荷对认知有显著的间接影响(P < 0.001),表明存在部分中介作用。


结论:在一般人群中,血管负担与全局效率降低和认知障碍有关。网络效率在血管负荷与认知的关系中起部分中介作用。这表明,治疗特定的风险因素可能会防止大脑网络效率的降低,并保持老龄化人口的认知功能。

二、研究结果

1.由于神经系统疾病、分析质量不合格的MR扫描以及MRI分析管道失败而被排除后,共有19364名参与者拥有可用的弥散性MRI数据。表1报告了这部分参与者的描述性统计数据。

85c814e5c2fa2fdb90283e925c1b578d.png

SD =标准差;TDI=汤森剥夺指数;BMI =身体质量指数;SBP=收缩压;TBV =总脑容量;WMH=白质高强度体积。TBV和WMH已根据头部尺寸进行了调整。

2.血管危险因素与白质网络全局效率相关

全局效率的回归分析结果如表2所示。第一次回归包括人口统计学变量、血管危险因素和TBV作为协变量,结果显示除了高胆固醇血症外,所有变量都与整体效率相关。年龄、TBV和性别解释了最大的变异,所有其他变量解释了相对较小的变异。

然后,我们将WMH体积加入到该回归模型中,以确定血管危险因素是否仅仅导致SVD, SVD本身会导致网络中断。正如预测的那样,在控制了所有其他变量后,WMH与全局效率相关。在模型中加入WMH后,许多系数比原来减弱了,导致吸烟和BMI变得不显著。然而,高血压和糖尿病仍然很重要,这表明在考虑了WMH之后一些血管危险因素甚至可以预测全局效率。WMH的加入提高了模型的校正R2,似然比检验证实完整模型是一种改进(F=1224.3, P<0.001)。用收缩压代替高血压后,结果相同(表3)。

527c1633d8cf77fd1c3bd9bb5753a012.png

9d39f21973f78952d255d5e8786242a2.png

β =标准化β系数;CI =置信区间;TDI=汤森剥夺指数;BMI =身体质量指数;TBV =总脑容量;WMH=白质高信号。

39134a3c1cb8d1b6bde9a733bbe1abea.png

d46e3b1956046ca285b3de410e48ccbf.png

β=标准化β系数;CI =置信区间;TBI=汤森剥夺指数;BMI =身体质量指数;SBP=收缩压;DBP=舒张压;TBV =总脑容量;WMH=白质高信号。

3.在控制全局效率后,血管负荷与认知无关

基于SEM的回归结果如表4所示。模型1显示,所有变量,包括血管负荷、人口统计学变量和WMH都与潜在认知因素相关。在模型2中,在模型1的基础上增加了全局效率,除血管负担外,所有变量都保持显著,这表明血管负担与认知之间的关系可能部分由全局效率介导

然后使用赤池信息准则(AIC)和贝叶斯信息准则(BIC)对这些模型进行比较,这两个模型选择指标的值越小表明模型越好,模型2最小化了AIC(模型1:67384,模型2:67324,ΔAIC=-60)和BIC(模型1:67671,模型2:67619,ΔBIC=-52),表明它是更好的整体模型。

d80f96434ef90349db5b15ce099a6781.png

ab81cb1bf7fc6bd98dd3e307f740461e.png

β=标准化β系数;CI=置信区间;TBI=汤森剥夺指数;WMH=白质高信号;AIC=赤池信息准则;BIC=贝叶斯信息准则。AIC和BIC值越低,模型拟合越好。

4.全局效率部分介导血管危险因素与认知之间的关系

中介分析的结果如图2所示。所有回归路径均显著(P < 0.001)。中介分析表明,血管负荷与认知之间的关系是由全局效率部分介导的,即使在控制全局效率后仍然显著。

d07d9f1d33f913831acd0aadd7f70385.png

设计与统计学方法

一、研究设计

P(Population)参与者:19346名接受了弥散性MRI和认知测试的英国生物银行(UK Biobank)参与者。

E(exposure)暴露因素:血管危险因素。

O(outcome)结局:脑白质网络的全局效率、认知能力评估。

S(Study design)研究类型队列研究。

二、统计方法

1.所有分析均在R 3.6.2中进行,使用lavaan包 0.6-5,除非另有说明,所有检验均为双尾,α=0.05。使用错误发现率(FDR)对所有报告的p值进行调整,以便在模型基础上进行多次比较,具有正倾斜的变量使用log10转换进行转换,如果值<1,则预先添加一个标量常数。转换的变量包括TDI、BMI、反应时间和视觉记忆。

10cedd702cd679745bf606164422186f.png

2.我们的分析试图回答三个相互关联的问题:(1)血管危险因素是否与全局效率相关;(2)控制血管危险因素后,全局效率能否解释一般认知功能的差异;(3)全局效率是否介导血管危险因素与认知之间的关系?

d601f804dfc8768513924ff8a222c420.png

3.为了回答第一个问题,血管危险因素是否与全局效率相关,我们以全局效率为因变量建立了两个多元线性回归模型。在第一个模型中,年龄、性别、种族、教育程度、TDI、标准化TBV和血管危险因素对全局效率进行了回归,使我们能够评估每个血管危险因素对全局效率的个人贡献。第二个模型包括了第一个模型中的所有项,同时添加了标准化的WMH体积作为额外的协变量来控制SVD的严重程度。然后使用似然比检验对这些模型进行比较。这些模型的显著差异表明,除了血管危险因素之外,WMH还解释了全局效率的额外差异。鉴于血压对影响全局效率的潜在重要性,我们用收缩压代替高血压重复分析

24e4c4345fe1b96fa698cf24efd89fce.png

4.为了回答第二个问题,在控制血管危险因素后,全局效率是否解释了一般认知功能的额外方差,我们使用了结构方程模型(SEM)。SEM允许对观察到的和未观察到的(潜在)变量之间的有向(回归)和无向(相关)关系进行建模。潜在变量不是在实验中直接测量的,而是通过其他测量变量推断出来的。然后,潜在变量可以对其他观察到的或未观察到的变量进行回归,使其成为一种有用的降维方法。

cf41e8d6958a2bd2815da761a3d517a4.png

5.定义了两个潜在变量:血管因素(以下称为血管负担),包括吸烟、BMI、高血压、高胆固醇血症和糖尿病;还有一个代表一般认知功能的因素,包括数字记忆,前瞻记忆,流体智力,反应时间和视觉记忆。这一单因素认知结构的心理测量特征和纵向稳定性先前已在该队列中得到验证,这些潜在变量随后被用于另一系列的多元回归,在SEM框架内建模。在第一个模型中,血管负担、人口统计学变量和WMH负担在一般认知因素上进行回归。第二个模型包括了第一个模型的所有条款,但增加了全局效率作为认知的预测指标。

7373a1f32c39d4f4441fec3fc6bc6bf0.png

e9a4d5e3ceda0224ace518addf5a4d44.png

6.为了回答第三个问题,即全局效率是否介导了血管危险因素与认知之间的关系,我们使用了中介分析,这是一种用于确定变量之间的关联是否可以通过第三个或中介变量的影响部分解释的技术,在该中介模型中,以血管负担为自变量,认知为因变量,全局效率为中介变量。在中介分析中,总效应(TE)是血管负荷与认知之间的原始关系,不受中介因素的调节。直接效应(DE)是调节中介后血管负担的效应,间接效应(IE)也称中介效应,是全局效率通过血管负担对认知的影响。显著的IE表明中介效应。

d5638b16bb92eaaf399e63aac1773476.png

7.为了解释零星的缺失数据,所有的SEM都使用全信息最大似然(FIML)进行拟合。FIML使用所有可用的信息来估计模型,从而在不输入缺失值的情况下利用部分完整情况下的信息。所有报告的β值均为标准化回归系数,因此具有直接可比性,而报告的p值已使用FDR方法在模型基础上进行了多次比较调整。

09c7015edcb021163ca50b093a627f87.png

闲来郑语 

这篇文章研究的是血管负担与认知障碍的关系,其中介变量是脑白质全局网络效率(我也不知道这是啥指标,反正是一个定量数据)。

98ed186aa726e14eb23a5982e73da568.png

这篇分析中,其中有一步是,通过建立了两个模型来评价血管负担与认知障碍的关系,

模型1显示,所有变量,包括血管负荷、人口统计学变量和WMH都与潜在认知因素相关。这个模型不包括全局网络效率,在这种情况下,血管负荷是有作用的(P = 0.023)。

模型2中,在模型1的基础上增加了全局效率,除血管负担外,所有变量都保持显著,这个模型包括全局网络效率,在这种情况下,血管负荷不再有统计学意义了(P = 0.09)。

实际上,第二个模型,是从AIC和BIC角度是更好的。模型2最小化了AIC(模型1:67384,模型2:67324,ΔAIC=-60)和BIC(模型1:67671,模型2:67619,ΔBIC=-52),表明它是更好的整体模型。

我们说多模型往往用来控制混子因素,是不是第二个模型表现得更出色,控制了混杂,所以结论以第二个模型为主,而说明血管负担不影响认知负担的呢?

实际上,我不止一次地说过,回归建模时,要评价暴露因素的总效应而不分析间接效应和直接效应,混杂因素要放进模型,而中介因子不能放在模型。

因此,虽然这篇文章为了研究中介作用,重点考察第2个模型,但如果我们很多时候只关注总效应,那么第1个模型才是我们重点要采纳的。否则,可能会弱化暴露因素的总效应。你以为的效应,只不过是直接效应而异。

更多的中介分析,请关注我们的【问卷与量表】的课程!

更多实战课程

2022年以来,我们召集了一批富有经验的高校专业队伍,着手举行短期统计课程培训班,包括R语言、meta分析、临床预测模型、真实世界临床研究、问卷与量表分析、医学统计与SPSS、临床试验数据分析、重复测量资料分析、结构方程模型、孟德尔随机化等10门课。如果您有需求,不妨点击查看:

10门科研与统计课程介绍:含孟德尔随机化课程

7bedb1c4a6c30e63f09ca761b0fdfd9b.png

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值