PSM与RCS联合发表二区4.3分文章!

研究通过2003-2018年Nhanes数据发现,美国40岁以上成人帕金森病与膳食炎症指数(DII)评分正相关。分析显示DII与PD风险在多个模型中呈正相关,特别是对非西班牙裔白人有显著影响,但非线性关联不明显。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Nhanes美国营养调查数据库的培训课程来了!

“Nhanes数据挖掘”课程即将开始! 欢迎报名, 发表文章即退款

2023年7月,暨南大学附属第一医院学者在《Frontiers in Neuroscience》杂志发表题为“Association between dietary inflammatory index and Parkinson's disease from National Health and Nutrition Examination Survey (2003-2018): a cross-sectional study “ 医学二区,IF=4.3文章的研究论文。

这项研究为一项横断面的病例对照研究,旨在研究美国40岁以上成年人帕金森病(PD)与膳食炎症指数(DII)评分之间的关系。结果表明,对于40岁以上的受试者,较高的DII评分与PD呈正相关。

23ce9d7531a2f92250fd3bab40ec134e.png

全国健康与营养调查(2003-2018)中饮食炎症指数与帕金森病相关性的横断面研究

摘要与主要结果

一、摘要

目的:探讨美国40岁以上成人帕金森病(PD)与膳食炎症指数(DII)评分之间的关系。

方法:收集2003 - 2018年全国健康与营养检查调查(NHANES)数据。共有21,994名参与者参与了这项研究。采用加权单因素和多因素logistic回归分析来研究DII和PD之间的关系,其中使用连续变量或分类变量按位数分组。使用倾向评分匹配(PSM)和基于DII和PD特征分层的亚组分析,进一步研究了DII和PD之间的关系。此外,我们还进行了限制性立方样条(RCS)分析,以检验DII与PD之间是否存在非线性关联。


结果:共获得21,994名受试者进行统计分析,其中PD患者263名,非PD患者21,731名。单变量和多变量logistic回归分析显示,匹配前后DII与PD呈正相关。亚组分析显示非西班牙裔白人有统计学差异,但RCS分析显示DII和PD之间没有非线性关系。


结论:对于40岁以上的参与者,较高的DII得分与PD呈正相关。此外,这些结果支持饮食作为治疗PD的干预策略的能力。


膳食炎症指数(DII):包括三个步骤。是获得Z分数: DII计算基于膳食摄入量数据,然后与具有区域代表性的世界数据库相关联,为每个参数提供稳健的估计平均值和标准偏差。然后,这些就变成了乘数,以Z分数的形式表达个人相对于“标准全球平均值”的暴露程度。它的计算方法是减去全球日平均摄入量,除以其标准差,将值转换为百分位数,将每个百分位数加倍,再减去“1”,以实现对称分布。得到“食物参数特异性DII评分”:将每个食物参数的中心百分位数乘以相应的“食物参数特异性总体炎症效应评分”。③计算“总体DII分数”:通过将每个“特定食物参数的DII分数”相加,我们可以得到个人的“总体DII分数”。通过24小时饮食回忆访谈收集的饮食数据用于计算DII评分。多数使用27种营养素来计算DII评分:酒精、维生素B12/B6、β-胡萝卜素、咖啡因、碳水化合物、胆固醇、能量、总脂肪、纤维、叶酸、铁、镁、单不饱和脂肪酸(MUFAs)、烟酸、n-3脂肪酸、蛋白质、多不饱和脂肪酸(PUFAs)、核黄素、饱和脂肪、硒、硫胺素、维生素A/C/D/E和锌。此外,即使用于计算DII的营养素数量<30,其DII分数仍然具有说服力。

二、研究结果

1.基线特征

该研究对21994名参与者进行了统计分析,包括263名PD患者和21731名非PD患者。对于连续变量,报告均值和标准差(SD),而对于分类变量,报告百分比。对于连续变量,使用线性回归模型分析基线特征,对于分类变量,使用卡方检验分析基线特征。通过基线特征分析发现,与非PD患者相比,PD患者更可能是老年人、女性、非西班牙裔白人、活跃饮酒者、家庭收入较低、DII较高、腰围高、有中风或糖尿病史。我们发现研究人群PD组的DII平均值(SE)为1.979(0.152),非PD组平均值(SE)为1.378(0.029)。

85858bacc4893c9d93a0e70959ba0352.png

dfb224c46035803c84e5b9668b9c6177.png

6f5acf864708fd458eb5033bf23b13f2.jpeg

为了进一步支持DII与PD风险之间的关系,采用最近邻倾向评分匹配(PSM)(1:2)建立了比较对照组。PSM后,两组间大部分基线特征无显著性差异,对照组526例,PD组263例,但两组间DII仍有显著性差异。

d1feefa96b562f328843600e633066cc.png

445122ea18c708eff7afce637624cb21.png

809e6f1a1a0a7ffa07c36f6071fcf627.jpeg

2.DII与PD间的单因素logistic回归分析

采用单因素logistic回归分析观察美国人群年龄、性别、种族、教育水平、BMI、家庭年收入、腰围、吸烟、酗酒、中风、糖尿病和心脏病发作之间的关联。根据我们的调查,年龄与PD的发生呈正相关,比值比(OR)和95%置信区间(CI)为1.02(1.01,1.04)。与男性相比,女性患PD的可能性更高[OR:1.65;95%CI:(1.19,2.29)]。低收入家庭(每年少于2000美元)的PD发病率较低,相对OR和95%置信区间为0.50(0.35,0.73)。与未卒中患者和非糖尿病患者相比,卒中患者和糖尿病患者患PD的风险更高[OR:1.52;95%CI:(1.08-2.14)和OR:1.58;95%CI:(0.93,2.70)。同时,我们发现DII与PD的发生呈正相关[OR:1.21(1.09,1.34)](p < 0.001)。T3组DII与PD相关性的OR为2.20(1.50,3.23)(p <0.0001),T2组差异无统计学意义。匹配后,作为连续变量,DII与PD的相关性也为正[OR:1.156 (1.025, 1.303)] (p=0.018)和按三分等分类,T3与T1组相比,[OR:2.012 (1.281, 3.159)] (p=0.003)。

注:DII评分的分位数如下:T1为−5.281 ~ 0.818,T2为0.818 ~ 2.61,T3为2.61 ~ 5.795。

473906fe8919b112aa8dce309b2d286b.png

456a1dc5915fc9ca011897273bcac7a6.png

fd4175fcb1a19dcfb767bd0cd4bc58a7.jpeg

3.DII 与 PD 之间关联的多因素logistic回归分析

我们构建了三个logistic回归模型来分析美国成年人DII与PD之间的关系。我们发现,在所有模型中,DII与PD风险呈正相关,OR和95%CI分别为1.209(1.090,1.341)、1.187(1.064,1.324)和1.129 (1.013,1.259)(p < 0.05)。所有模型在T3时差异显著,OR和95%CI分别为2.200(1.499,3.229)、2.027(1.349,3.045)和1.666 (1.099,2.525)(p < 0.005)。使用我们的调查作为比较,我们发现较高的DII水平可能是PD的独立危险因素。在三种模型匹配后,高DII水平与PD升高之间仍然存在显著关联,尽管这种关联有所减弱。

aca181270b4a118eea13e66f84b628ac.png

模型1为未经协变量调整的粗模型。

模型2根据年龄、性别和种族进行调整。

模型3根据年龄、性别、种族、受教育程度、BMI、家庭年收入、腰围、吸烟状况、酒精、中风、糖尿病、心脏病等因素进行调整。

4.亚组分析

为了确定年龄、性别、种族、家庭年收入、吸烟状况、酒精、中风、糖尿病和心脏病发作与DII和PD之间的关系,采用亚组分析。年龄可能影响DII与PD之间的正相关关系(交互作用P <0.05)。在男性中,DII与PD的相关性更为显著(OR: 1.205;95%CI: 1.025 ~ 1.416),匹配后两组差异无统计学意义。当亚组分析中使用种族时,非西班牙裔白人的相关性更为显著,匹配前后的OR分别为1.210(1.079,1.357)和1.165 (1.015,1.337)。

5fa2e2cff2fa81a8bc72bb726d18311d.png

40f8bef75a34340f9c1872acc5b6b7ad.png

5.非限制性立方样条图

基于模型3绘制RCS以直观地描述匹配前后DII和PD之间的关系。然而,RCS分析的结果显示DII和PD之间没有非线性关联(非线性的p = 0.227和0.927,分别在匹配之前和之后)。

1825f6be6a34463d3247ca873102ac3b.png

设计与统计学方法

一、研究设计

P(Population)参与者2003年至2018年进行的全国健康和营养检查调查(NHANES)数据库中的21,994参与者。

E(exposure)暴露因素:膳食炎症指数(DII)评分

O(Outcome)结局:帕金森病(PD)

S(Study design)研究类型横断面研究

二、统计方法

1.采用R4.2.2版本。在描述性分析中,对于连续变量,报告均值和标准差(SD),而对于分类变量,报告百分比。对于连续变量,基线特征采用线性回归模型进行分析,对于分类变量,采用卡方检验进行分析。

edfdca72d2fed04cb340e1ac4aa1085b.png

2.我们采用1:2比例的PSM方法来平衡病例和对照组。在观察性研究中,该比值被广泛用于倾向评分匹配,以提高统计能力并最大限度地减少潜在的偏差。

5ebcefbf0574ceea99326c73427dd077.png

3.采用单因素logistic分析和多因素logistic分析确定DII是否与PD相关。在模型中,DII被视为一个连续变量,并被划分为几类,其中1类作为PSM前后的参照组。

bcdc8e4943468bbc714824472798b5c1.png

4.我们还根据PSM前后的年龄、性别、种族、教育程度、家庭收入、吸烟状况、饮酒、中风、糖尿病和心脏病进行了亚组分析

e04f6f17fc2a603809910ef665fa24cd.png

5.限制性立方样条图,采用模型3中基于多因素logistic分析的RCS分析来评估匹配前后DII与PD之间的非线性关联。我们在分析数据时考虑了所有调查抽样的权重。p < 0.05认为差异有统计学意义。

dd27e180aa785a2916d72afe6489308c.png

最后,欢迎报名郑老师团队的统计学9.2-9.3的Nhanes数据挖掘课程

54e40c5b5e35921398c10d60e5413403.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值