倾向性得分匹配后,如何快速开展条件logistic回归?

倾向得分匹配法是通过对样本建模(logit模型)得到倾向性得分,通过倾向性得分为试验组在对照组中找到最接近的样本,从而进行研究的。

倾向得分匹配在真实世界临床研究用途越来越广泛,它是一种事后推动组间比较均衡化的方法,控制混杂偏倚。

那么匹配完了后,应该用什么方法呢?

85d682161512ac02af42b8ba8ca73404.png

观察性研究,当我们数据已经均衡可比了,我们应该怎么去分析呢?

倾向得分匹配后,出现了两种现象:第一,样本量减少了;第二,匹配带来了数据的聚集性,造成数据不独立。

这里仅针对“二分类结局”,提出几种解决数据不独立样本量减少办法。二分类结局,倾向得分匹配后,可开展配对卡方检验、也可开展logistic回归分析。我们都知道logistic回归,但很多不知道,logistic分为条件logistic和非条件logistic分析。当数据是匹配状态时,建议采用条件logistic回归开展,而倾向得分匹配后,应采用匹配logistic回归,或者说条件logistic分析。

接下来分别向大家展示匹配后回归分析的R语言代码与风暴统计平台的便捷式操作!

b7bb4133e9b3ccb32bd87369b5fdef82.png

一、实操案例介绍

数据集来源于R自带MASS数据集birthwt,这是一份于1986年在在马萨诸塞州收集的与婴儿出生体重低相关的危险因素的数据。本次实操涉及的变量说明如下。

5914a7ae24be4a38327c67e3949048a5.png

二、R语言代码

在R语言中,条件logistic回归,常用的函数在survival包的clogit函数,以下是示意图。

library(survival)


Log1<-clogit(low~smoke+strata(subclass),data=birthwt)


summary(log1)

代码解读:clogit(结局~暴露+strata(subclass),data=数据集),subclass可以理解为倾向性得分匹配后,各变量的新id名,匹配上的个案subclass值相同。

三、风暴统计实操

在风暴统计平台,目前完成倾向性得分匹配后,可以一站式解决条件logistic回归!以R代码为基础,但是操作更加便捷简单!有需要各位可以试一试!


https://shiny.medsta.cn/psm/

1.倾向性得分匹配

在上一篇文章中,就为大家详细介绍了风暴统计平台进行PSM分析的实操全流程,包括匹配前后的差异性三线表、概率密度分析图、SMD分析图等,匹配后数据与分析结果均支持下载!可以点击下方链接了解详情!

倾向得分匹配后,应该用什么统计学方法分析?

2.PSM后回归分析

①回归模型的选择

这里直接勾选模型即可,比R代码更便捷简单!

49434647fc5cca22d91919d0835c765b.png

②回归变量的选择

这里需要选入我们研究的暴露因素,及匹配后仍不均衡的变量。假设我们本研究想要探索吸烟对婴儿出生体重的影响,在匹配后,其他变量都均衡的情况下,只需要纳入吸烟这一个变量即可。

1b6407690fb5e10ced3324d296276a6d.png

右侧立即给出匹配后单因素、多因素及单+多三种结果的三线表结果!

cd2145e2cd6c68f9992b9147e6851881.png

③下载保存结果

分析结束后,可以直接将分析结果下载下来,直接是三线表形式,一步到位!

8591e0eaf76c77892bf66672431921b6.png

以上就是本次更新的全部内容了,下一篇,我们接着讲匹配后的cox回归应该如何开展!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值