倾向性得分匹配后,生存时间资料要如何分析?

文章探讨了倾向得分匹配在临床研究中的应用,尤其是在处理混杂偏倚时。重点介绍了稳健Cox回归、分层Cox回归和脆弱模型在生存事件数据分析中的使用,以R语言和风暴统计平台为例提供了实操步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

倾向得分匹配法是通过对样本建模(logit模型)得到倾向性得分,通过倾向性得分为试验组组在对照组中找到最接近的样本,从而进行研究的。

倾向得分匹配在真实世界临床研究用途越来越广泛,它是一种事后推动组间比较均衡化的方法,控制混杂偏倚。那么匹配完了后,应该用什么方法呢?

15e9c81c9da9da6687b8c51a70b46068.png

观察性研究,当我们数据已经均衡可比了,我们应该怎么去分析呢?

倾向得分匹配后,出现了两种现象:第一,样本量减少了;第二,匹配带来了数据的聚集性,造成数据不独立。

这里针对“生存事件资料”,提出几种解决数据不独立、样本量减少的办法。生存事件资料倾向得分匹配后,可开展分层Cox回归、稳健Cox回归、Cox 脆弱模型(Frailty model)回归。在Cox回归应用上,我看大多数人还用普通的Cox回归。其实,最推荐的应该是稳健法Cox回归方法


接下来通过一份是实操数据集分别向大家展示匹配后回归分析的R语言代码风暴统计平台的便捷式操作! 

0cd3f03de056bb7837df53cc6c8b4d43.png

一、实操案例介绍

数据集来源于R自带survival包的数据集gbsg,该数据集包含1984-1989年德国乳腺癌研究小组(GBSG)进行的720例淋巴结阳性乳腺癌患者试验的患者记录;它保留了686例患者预后变量的完整数据。本次实操涉及的变量说明如下。

2cd30be0db944fd6233d6592d9da2ed0.png

二、R语言代码

在R语言中,稳健法Cox回归方法,,它同样在survival包的conph函数中,增加了cluster参数设置,这个参数设置了,你就知道它的好处了。

coxph(Surv(rfstime, status)~hormon,cluster = subclass,data=gbsg)

除此之外,一些学者推荐了其它的方法,有一种是分层Cox回归,另外就是脆弱模型。分层Cox回归,Cox方程中增加strata参数设置

coxph(Surv(rfstime, status)~hormon+strata(subclass),data=gbsg)

脆弱模型,Cox方程中增加frailty参数设置

coxph(Surv(rfstime, status)~hormon+strata(frailty),data=gbsg)

cox三种回归模型,结果有一定的差异。一些文献,包括我,推荐稳健法Cox回归模型

三、风暴统计实操

在风暴统计平台,目前完成倾向性得分匹配后,可以一站式解决各类Cox回归!以R代码为基础,但是操作更加便捷简单!有需要各位可以试一试!

https://shiny.medsta.cn/psmcox/

1.倾向性得分匹配

在之前的文章中,就为大家详细介绍了风暴统计平台进行PSM分析的实操全流程,包括匹配前后的差异性三线表、概率密度分析图、SMD分析图等,匹配后数据与分析结果均支持下载!可以点击下方链接了解详情!

倾向得分匹配如何开展?非常便捷的工具来了,分分钟形成一篇论文!

2.绘制生存曲线图

这里我们想要研究激素治疗(hormon)对乳腺癌患者生存时间的影响。分别选入生存时间变量、生存结局变量、分组变量,数据集可以是匹配前也可以是匹配后。

668c7f2a69469a95510cf94a2cfd2d5c.png

c1eed94208ba6acc74767c19db5b236e.png

选择完毕后,右侧直接给出KM曲线!最右侧菜单栏还可以调整图片的配色、字体及其他要素等,即使是新手小白也可以绘制出不输R语言的精美图像。

7797f1c59fab6566acec8d01a815dcb4.png

3.匹配后的回归分析

①回归模型的选择

这里直接勾选模型即可,比R代码更便捷简单!

b86c6e82b6d6ae448dc40b9e50e86d9c.png

②回归变量的选择

这里需要选入我们研究的暴露因素,及匹配后仍不均衡的变量。

9d9882f04992a0608db5d404380c997f.png

例如我们想要研究激素治疗(hormon)对乳腺癌患者生存时间的影响,在匹配后,其他变量都均衡的情况下,只需要纳入激素治疗(hormon)这一个变量即可。

2a75085b85e2f44cbaed786dc3acec83.png

右侧立即给出匹配后单因素、多因素及单+多三种结果的三线表结果!

d58e0206b5bea5661278e3254dbe9799.png

③下载保存结果

分析结束后,可以直接将分析结果下载下来,直接是三线表形式,一步到位!

b3f18e75f8049ec9bb1b6e756115b8c9.png

以上就是本次更新的全部内容了,如果关于网站建设,您有其他建议,欢迎留言哦!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值