重复题目的意思,这是一个中国学者写的公共数据库论文,这是近年来我所看目前看到的统计方法最多、最全的文章,你们看用了哪些统计学方法?
2023年2月11日,《Environment International》(IF=13.352)发表题为:Association between solid cooking fuel and cognitive decline: Three nationwide cohort studies in middle-aged and older population的研究论文。
这项研究使用中国家庭面板研究(CFPS)、中国健康与养老追踪调查(CHARLS)和墨西哥健康与老龄化研究(MHAS)三个全国代表性的数据库,研究了队列中固体烹饪燃料与认知功能的关联。结果表明,使用固体烹饪燃料与认知能力下降的风险更高有关。
摘要与主要结果
一、摘要
背景
家庭固体燃料燃烧会导致室内空气污染,并与认知功能差有关,但固体烹饪燃料的使用如何随着时间的推移导致认知能力下降尚未得到很好的阐述。
方法
本研究使用了2010-2018年中国家庭面板研究(CFPS)、2011-2018年中国健康与退休纵向研究(CHARLS)和2003-2015年墨西哥健康与老龄化研究(MHAS)的数据,研究对象为50岁以上的成年人。进行时变Cox模型以测量烹饪燃料类型与认知能力下降之间的关联。中介分析用于估计烹饪燃料类型与认知能力下降风险关联的潜在中介效应。
结果
CFPS,CHARLS和MHAS的受访者在基线时依赖固体烹饪燃料的比例分别约为56%,51%和12%。在三个队列中,使用固体燃料始终与认知能力下降的风险较高相关(CFPS:HR = 1.300 [95 % CI:1.201, 1.407],CHARLS:HR = 1.179 [95 % CI:1.059,1.312],MHAS:HR = 1.237 [95 % CI:1.123,1.362])。与使用持久固体燃料的人相比,持久性清洁燃料和从固体燃料转向清洁燃料与认知能力下降的风险较低有关。高血压、糖尿病、体力活动、血脂异常和高密度脂蛋白胆固醇(HDL-C)可能部分介导固体燃料使用引起的认知能力下降。在认知能力下降负担中,CFPS为18.23%(95%置信区间:12.21%,24.73%),CHARLS为8.90%(95%置信区间:2.93%,15.52%),MHS为2.92%(95%置信区间:1.52%,4.46%),可归因于固体烹饪燃料使用。
结论
使用固体烹饪燃料与认知能力下降的风险更高有关。必须促进扩大清洁燃料的使用,以保护认知健康。
二、研究结果
1. 基线特征
共有15,644名参与者(CFPS为6134名,CHARLS为3413名,MHAS为6097名)(表1,图1)。按烹饪燃料类型划分的参与者基线特征(CFPS的平均年龄(M±SD)59.42±6.52,CHARLS为59.52±6.32,MHAS为60.31±6.88)如表1所示。在基线时,55.8%的CFPS参与者,51.3%的CHARLS参与者和12.2%的MHAS参与者使用固体烹饪燃料。在所有三项研究中,使用固体烹饪燃料的参与者通常具有较低的基线认知测试分数,教育水平,BMI和家庭人均消费总量,并且患高血压和糖尿病的痛苦较少。此外,在MHAS队列中,使用固体烹饪燃料的参与者年龄较大。在CHARLS和MAS队列中,使用清洁烹饪燃料的参与者更经常患有血脂异常。在CFPS和CHARLS队列中,使用固体烹饪燃料的参与者更经常被吸烟。在三项研究中,两组之间在婚姻状况方面没有发现差异。
2.烹饪燃料与认知能力下降之间的关联
固体烹饪燃料的使用与认知能力下降的风险较高有关(表2)。在时变Cox回归分析中,在CFPS中,在仅包括基线认知测试分数的最小调整模型中,固体(与清洁)烹饪燃料的使用与认知能力下降的风险较高相关(HR = 1.333 [95 % CI:1.245, 1.427])。当在模型2中加入年龄、性别、婚姻状况和教育水平,在模型3中加入吸烟状况和饮酒状况时,这种关系仍然具有统计学意义(模型2:HR = 1.365 [95% CI:1.273,1.463],模型3:HR = 1.359 [95% CI:1.267,1.457])。在完全调整的模型(模型4)中,我们进一步增加了家庭人均消费总量,固体燃料使用与认知能力下降的关系具有统计学意义(HR = 1.300 [95 % CI:1.201, 1.407])(表2)。在CHARLS和MHAS中也观察到了类似的结果(HR = 1.179 [95% CI:1.059, 1.312];HR = 1.237 [95 % CI:1.123, 1.362])。在混合线性模型中,调整了与主分析中相同的协变量。在CFPS中,仅根据基线认知测试分数进行调整,使用固体燃料与认知评分降低有关(β = -0.084 [95 % CI:−0.095, -0.074])。在额外调整人口统计学特征和健康行为因素后,获得了一致的结果(模型2:β = -0.091 [95 % CI:-0.101,-0.080];模型3:β = -0.090 [95 % CI:-0.101,-0.080])。在完全调整的模型中,估计值有所下降,但与使用固体烹饪燃料仍然存在关联(β = −0.075 [95 % CI:−0.088, −0.063])。混合线性回归分析结果的模式在CHARLS和MHAS中是一致的。
3.烹饪燃料轨迹与认知能力下降之间的关联
基于基于组的轨迹建模,我们估计了燃料转换对认知功能的影响(图2)。利用几次随访的数据,确定了烹饪燃料类型变化的三种轨迹(补充表5,补充图2):持久性固体燃料,从固体燃料到清洁燃料的转变,持久性清洁燃料。在完全逻辑回归调整模型中,与使用持久固体燃料、持久清洁燃料的参与者相比(CFPS:OR = 0.482 [95 % CI:0.395, 0.589];查尔斯:OR = 0.734 [95 % CI:0.592, 0.910]);MHAS:OR = 0.474 [95 % CI:0.376, 0.599]),并从固体燃料变为清洁燃料(CFPS:OR = 0.792 [95 % CI:0.654, 0.961];MHAS:OR = 0.680 [95 % CI:0.516, 0.895])降低了认知能力下降的风险。在CHARLS中,也有迹象表明从固体燃料转向清洁燃料的参与者风险降低,但结果没有达到统计学意义。
4.分层和交互分析
分层分析表明,烹饪燃料与认知能力下降之间的关联在不同亚组中大致相似(图3)。我们发现以下因素可能改变烹饪燃料与认知能力下降的关联:年龄和教育水平(CFPS:P 交互<0.001),吸烟状况(CHARLS:P 交互= 0.042)和家庭人均消费总量(MHAS:P 交互<0.001),但三个队列的结果不一致。然而,在三个队列中,烹饪燃料与性、婚姻状况和饮酒状况之间没有发现显着的相互作用(图3)。
5.中介分析
中介分析强调,BMI和生化介质(在CHARLS中,HDL-C除外)不介导烹饪燃料 - 认知能力下降的关联,高血压,糖尿病,体力活动,血脂异常和生化介质(HDL-C)可能部分促成固体烹饪燃料与认知能力下降之间的关联(介导从2%到14%,图4).在CHARLS中,身体活动和HDL-C分别介导了烹饪燃料类型对认知能力下降的影响的13.9%(95%置信区间:0.9%,81.7%)和4.3%(95%置信区间:0.2%,13.7%)。在MHAS中,高血压,糖尿病和血脂异常介导的-1.5%(95%置信区间:-4.7%,-0.02%),-4.7%(95%置信区间:-11.3%,-1.9%)和5.7%(95%置信区间:1.8%,13.4%)烹饪燃料类型对认知能力下降的影响。然而,由于高血压和糖尿病中介分析中的掩蔽效应,结果可能低估了实际的介导作用。
6.人口归因分数
归因病例(AT)和人群归因分数(PAF)显示,固体烹饪燃料的使用导致认知负担下降(表3)。在所有分析参与者中,CFPS为18.23%(95%置信区间:12.21%,24.73%),CHARLS为8.90%(95%置信区间:2.93%,15.52%),MHS为2.92%(95%置信区间:1.52%,4.46%)的认知能力下降病例可归因于固体烹饪燃料的使用,对应于625(95%置信区间:419,848),160(95%置信区间:53,279),117(95%置信区间:61, 179)认知能力下降病例。
7.敏感性分析
敏感性分析显示,主要结果是稳健的。首先,使用IPTW方法的倾向评分重新加权来最小化受试者特征的差异,我们获得了类似的结果,表明我们的主要发现不受受试者基线特征的偏倚。其次,在对缺失数据进行多次插补后,结果与主要分析基本一致。第三,认知能力下降定义为随访时认知评分降低≥1、2、4、5和6分,结果与主要分析结果大致相似,只是在完全调整≥模型中的结果降低4、5分在CHARLS中没有达到统计学意义第四,在定义认知能力下降的随访中使用≥降低10%的点,获得的结果与主要分析中的结果相似。第五,包括随访中丢失并被审查的受试者,结果与主要分析一致。第六,在多变量线性回归模型中,结果表明使用固体燃料与认知评分的降低有关。最后,包括基线认知得分<3分的受试者,结果与主要分析基本一致。
设计与统计学方法
一、研究设计
P:FPS的三波(2010年,2014年和2018年),CHARLS的四波(2011年,2013年,2015年和2018年)以及MHAS的三波(2003年,2012年和2015年)共有15,644名参与者(CFPS为6134名,CHARLS为3413名,MHAS为6097名)
E/C: 清洁燃料/固体烹饪燃料
O:认知功能
S:队列研究
二、统计方法
1. 为了评估固体烹饪燃料与认知能力下降的关联,我们采用时变Cox回归,以随访时间为时间尺度,计算风险比(HR)和相应的95%置信区间(CI)
2.拟合以个体为随机效应的混合线性模型,以探索烹饪燃料与认知功能的z分数的纵向关联。
3.为了更好地了解燃料转换对认知功能的影响,我们通过Stata中的traj命令使用基于组的轨迹建模定义了烹饪燃料类型变化的轨迹
4.我们使用逻辑回归来计算比值比(OR)和相应的95%CI
5.使用基线特征作为修饰符进行分层和相互作用分析,以评估烹饪燃料在不同亚组之间影响的潜在差异。
6.我们使用R包“中介”中实现的函数进行了中介分析,结果由有向无环图显示
7.计算了归因病例(AT)和人群归因分数(PAF),以量化三个队列人群中50岁以上人群中因固体燃料使用而导致的认知能力下降负担
8.7次敏感性分析检验结果的稳健性,包括使用从倾向评分得出的删失逆概率加权(IPTW)来进一步控制混杂、使用链式方程法对缺失的数据进行多重计算
9.有统计分析均使用R 4.1.0进行,双尾P<0.05表示具有统计学意义
好了,现在可以来交流了,
他们用了哪些统计学方法?
答案见留言!
更多实战课程
2022年以来,我们召集了一批富有经验的高校专业队伍,着手举行短期统计课程培训班,包括R语言、meta分析、临床预测模型、真实世界临床研究、问卷与量表分析、医学统计与SPSS、临床试验数据分析、重复测量资料分析、结构方程模型、孟德尔随机化等10门课。如果您有需求,不妨点击查看:
10门科研与统计课程介绍:不限次直播,每周答疑!配纸质版讲义
一个专门做公共数据库的公众号,关注我们