统计小食:logistic回归逐步回归法P>0.05的还留在模型怎么办?

本文介绍了在logistic回归中,特别是自变量过多时如何使用风暴统计平台进行逐步回归并限制P值的过程,以避免结果解释中的问题。该平台提供用户友好的菜单操作,简化了复杂的数据分析步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

logistic回归中变量筛选可以采用先单后多逐步回归的方法进行,先单后多平时比较常见,这里主要讲一下逐步回归!

其实,逐步回归法是给构建预测模型用的,不是探讨影响因素用的。它的目的是用最少的因子,成功构建出不差于全变量模型(通过用R^2、-2倍对数似然值或者AIC等指标评价拟合效果)。但是当自变量过多时,有些同学就会在影响因素研究中使用逐步回归来筛选变量。这就会出现一些尴尬的事情!

由于评价指标不同(先单后多是根据P值筛选,逐步回归是通过R^2、-2倍对数似然值或者AIC进行拟合评价),因此可能会出现有些变量P值大于0.05但仍保留在逐步回归模型中!这是正常的,但是在结果解释的时候会带来一些难题,想要避免这种情况的发生,我们希望在逐步回归中限制P值!

目前浙江中医药大学的郑卫军教授基于R语言开发的风暴统计平台,简单2步,就可以解决这个问题,平台是公开免费使用的,与R语言分析结果一致,但是实现了菜单式操作,对代码小白十分友好!

风暴统计平台,可以直接按照P值开展逐步回归法分析!

logistic回归具体网址:https://shiny.medsta.cn/log/

或者百度、必应Bing搜索“风暴统计”

本平台上线的所有工具都是免费的

7639ade1405338d04c3d62644cbc6a90.png

这里我们不再赘述数据的导入与整理过程,详细教程大家可以点击下方链接:

目前风暴统计平台可以完成逐步回归+P值i限制,只需2步!

首先,进入风暴统计平台,找到logistic回归模块

08acb2d57226543ed03f8f9a6861e775.png

然后,开始logistic回归操作

1.logistic回归自变量选择

首先,选入变量,包括因变量定量自变量分类自变量

f739129d1f5ace452b61d69c2b1d2468.png

①因变量

这里因变量建议使用0和1进行表示,0代表阴性结局(如:未患病、二分类变量中值较小的组),1代表阳性结局(如:患病或二分类结局中值较大的组)。

②定量自变量

平台会将分类数大于5的变量自动归为定量自变量,并在选取定量自变量时,优先显示在上方,便于选取。

0e111cb355ad9799404a70dc0f1cb263.png

③分类自变量

同理,分类数小于5类的变量归入分类变量,在选取变量时,优先显示分类变量。

10dd4f9a1b11928e8c7837cabb05b888.png

2.开展逐步回归+P限制

逐步回归方法,平台也提供了多种选择:双向逐步回归,向前逐步回归,向后逐步回归以及考虑到有时P值大于0.05的变量在逐步回归时也会留在模型中,新增了根据P<0.05的原则开展逐步回归

66c8bf3aee4aff4218ecbe85d94fbe87.png

3.下载结果

平台给出了多种结果展示,仅展示单因素回归结果仅展示多因素回归结果单因素+多因素显示在同一个表格中!

3c3e7be658d94768a4065ccc8936e099.png

然后也可以选择小数位数,默认情况下,P值为3位小数,其他统计量为2位小数。

指定小数位数后,P值与统计量的小数位数将会统一。调整完成后,下载最终的三线表结果,平台支持下载excel或word

d5746fe0303b6f37f943df1c9b15ef30.png

十分的快捷便利,简单勾选,就可以轻松完成logistic逐步回归同时限制P值,结果直接整理为规范的三线表,可以节省超多工作量,快来试用吧!

882e25a73ced094087670ff7f78bc6fb.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值