logistic回归中变量筛选可以采用先单后多或逐步回归的方法进行,先单后多平时比较常见,这里主要讲一下逐步回归!
其实,逐步回归法是给构建预测模型用的,不是探讨影响因素用的。它的目的是用最少的因子,成功构建出不差于全变量模型(通过用R^2、-2倍对数似然值或者AIC等指标评价拟合效果)。但是当自变量过多时,有些同学就会在影响因素研究中使用逐步回归来筛选变量。这就会出现一些尴尬的事情!
由于评价指标不同(先单后多是根据P值筛选,逐步回归是通过R^2、-2倍对数似然值或者AIC进行拟合评价),因此可能会出现有些变量P值大于0.05但仍保留在逐步回归模型中!这是正常的,但是在结果解释的时候会带来一些难题,想要避免这种情况的发生,我们希望在逐步回归中限制P值!
目前浙江中医药大学的郑卫军教授基于R语言开发的风暴统计平台,简单2步,就可以解决这个问题,平台是公开免费使用的,与R语言分析结果一致,但是实现了菜单式操作,对代码小白十分友好!
风暴统计平台,可以直接按照P值开展逐步回归法分析!
logistic回归具体网址:https://shiny.medsta.cn/log/ 或者百度、必应Bing搜索“风暴统计” 本平台上线的所有工具都是免费的 |
这里我们不再赘述数据的导入与整理过程,详细教程大家可以点击下方链接:
目前风暴统计平台可以完成逐步回归+P值i限制,只需2步!
首先,进入风暴统计平台,找到logistic回归模块
然后,开始logistic回归操作
1.logistic回归自变量选择
首先,选入变量,包括因变量、定量自变量、分类自变量。
①因变量
这里因变量建议使用0和1进行表示,0代表阴性结局(如:未患病、二分类变量中值较小的组),1代表阳性结局(如:患病或二分类结局中值较大的组)。
②定量自变量
平台会将分类数大于5的变量自动归为定量自变量,并在选取定量自变量时,优先显示在上方,便于选取。
③分类自变量
同理,分类数小于5类的变量归入分类变量,在选取变量时,优先显示分类变量。
2.开展逐步回归+P限制
逐步回归方法,平台也提供了多种选择:双向逐步回归,向前逐步回归,向后逐步回归以及考虑到有时P值大于0.05的变量在逐步回归时也会留在模型中,新增了根据P<0.05的原则开展逐步回归!
3.下载结果
平台给出了多种结果展示,仅展示单因素回归结果,仅展示多因素回归结果,单因素+多因素显示在同一个表格中!
然后也可以选择小数位数,默认情况下,P值为3位小数,其他统计量为2位小数。
指定小数位数后,P值与统计量的小数位数将会统一。调整完成后,下载最终的三线表结果,平台支持下载excel或word!
十分的快捷便利,简单勾选,就可以轻松完成logistic逐步回归同时限制P值,结果直接整理为规范的三线表,可以节省超多工作量,快来试用吧!