Question
A randomised controlled trial evaluated the effectiveness of an integrated care programme compared with usual care in facilitating the return to work for patients with chronic low back pain. The integrated care programme was a combined patient and workplace directed intervention. The trial participants were 134 adults aged 18-65 years who had had low back pain for more than 12 weeks, were in paid work, and had been absent or partially absent from work.
Variables measured at baseline included patient’s sex, age, and level of education. Level of education was classified as low (preschool or primary school), intermediate (secondary school), and high (tertiary, university, or postgraduate). Trial participants were followed for 12 months. The primary outcome was duration of time off work after randomisation until a fully sustained return to work. Secondary outcomes included the number of consultations to primary or secondary care.
Which of the following, if any, are true?
·a) The sex of the patient is a nominal variable.
·b) Level of education is an ordinal variable.
·c) The number of consultations to primary or secondary care is a discrete variable.
·d) Age is an ordinal variable.
提示:这是一道多选题。
Answer
Answers a, b, and c are true, whilst d is false.
The purpose of the study was to collect data to evaluate the effectiveness of an integrated care programme compared with usual care in facilitating the return to work for patients with chronic low back pain. The data consisted of observations for 134 subjects on a series of variables. A variable is an attribute that changes from one person to another—for example, age and sex. Variables can be either categorical or numerical.
Categorical variables consist of a number of distinct categories that have been assigned names, and each individual belongs to a single category. Categorical variables, sometimes referred to as qualitative variables, are subdivided into nominal and ordinal variables. Sex is a nominal variable (a is true); individuals belong to one of two categories—male or female. The categories have no order to each other. Other examples of nominal variables include marital status, ethnicity, and blood group. Categorical variables that have only two possible categories, such as sex, are called binary or dichotomous.
Ordinal variables have categories that are ordered in some way. Level of education is an ordinal variable with three categories—low, medium, and high (b is true). The categories are ordered and represent the amount of education received. Further examples of ordinal variables include assessment of change in pain, categorised as “marked improvement,” “improvement,” “no change,” “worsening,” and “marked worsening.” Differences between categories, either for nominal or ordinal variables, cannot be measured and have no meaning.
Numerical variables are those where the data take a numerical value; that is, the data consist of only digits. Numerical variables are sometimes referred to as quantitative variables, and can be subdivided into continuous and discrete data. Discrete variables consist of whole numerical values with the data consisting of integer values that record counts or number of events. The number of consultations to primary or secondary care is a discrete variable (c is true); for each participant the number of consultations was recorded. Further examples include numbers of teeth extracted or people living in a household.
The age of a patient is a continuous variable because it is possible to take a potentially infinite number of values along a continuum (d is false). The accuracy to which age can be recorded is not restricted, other than by the method used to measure it. Height and weight are further examples of continuous variables. The difference between values on a continuous scale can be quantified and have a physical meaning. For example, a weight of 75 kg is heavier than that of 70 kg, and the difference of 5 kg has the same physical quantity and meaning throughout the measurement scale for weight.
所以答案是选择 a b c
每天学习一点,你会更强大!