大爆发!一周172篇!简单双样本MR发了多篇二区论文 | 孟德尔随机化周报

详情请点击下方:

详细版!如何利用风暴统计进行数据的整理转换?


孟德尔随机化的发文量持续上升,分析简单发文快,可做的内容也越来越多。但这也造成了选题难,刚想好的选题可能下一秒就被别人发了。所有,我们需要密切关注最新的文章,不打“没有准备的仗”!本周孟德尔随机化发文量再创新高,一周172篇,让我们来看看都说了什么!

孟德尔随机化,Mendilian Randomization,简写为MR,是一种在流行病学领域应用广泛的一种实验设计方法,利用公开数据库就能轻装上阵写文章,甚至是高质量的论文。

孟德尔随机化通过引入一个称之为工具变量的中间变量,来分析暴露因素和结局之间的因果关系,解决了传统实验方法由于混杂因素的存在,而无法有效说明暴露因素和结局变量之间因果性的问题。

b7685b13f208ffdb2cc81793cd5fa9dd.png

通过PubMed数据库“ Mendelian randomization”检索发现,5.30-6.5共发表172相关主题论文,其中共19医学1区,38篇医学2区文章,部分文章介绍如下。

中国学者:

1.国学者文章介绍(一)

0f4f583fa949d3da0ce995daf9656942.png

文章题目:肾功能测量和死亡率:孟德尔随机化研究

研究目的:估计肾小球滤过率 (eGFR) 低的个体死亡风险很高。然而,支撑这种关联的原因在很大程度上是不确定的。本研究旨在评估低 eGFR 与全因和特定原因死亡率的因果关系。

研究方法:来自英国生物样本库的436,214名白人参与者(54.3%为女性;年龄56.8±8.0岁)的个人水平数据。 纳入孟德尔随机化 (MR) 的回顾性队列研究。使用胱抑素 C (eGFR)的暴露来估计 (eGFR囊肿)。用于常规观察分析的 Cox 比例风险分析;使用遗传等位基因评分作为代表肾功能的工具变量实施线性和非线性 MR 分析,以估计肾功能对生存结果的影响。

研究结果:在12.1年的中位随访期间,有30,489人死亡,其中6,098人归因于心血管事件,15,538人归因于癌症,1,516人归因于感染,7,227人归因于其他事件。在常规观察性分析中,eGFR囊肿与所有结果呈非线性关联。MR 分析表明,遗传预测的 eGFR 较低囊肿在整个测量范围内(每 10 mL/min/1.73m),与较高的心血管死亡率(HR,1.43;95% CI,1.18-1.75)呈线性相关2递减)。尽管如此,eGFR之间没有因果关系囊肿检测到全因死亡率(HR,1.07;95% CI,0.98-1.17)或任何类型的非心血管死亡率。

结论:这些发现表明,在普通人群中,低eGFR与心血管死亡率之间存在潜在的因果关系,但未观察到与全因死亡率或非心血管死亡率的因果关系。有必要对其他人群进行进一步研究以证实这些发现。

499711eec8acd10e47f56d8feef852a4.png

2.国学者文章介绍(二)

a2e36dd95e5efa60253bd5256b8618e4.png

文章题目:遗传预测的情绪波动会增加患心血管疾病的风险:孟德尔随机化分析的证据

研究目的:情绪波动与心血管疾病 (CVD) 的风险增加有关。然而,它们之间的因果关系仍然未知。

研究方法 我们进行了孟德尔随机化 (MR) 分析,以评估情绪波动 (n = 373,733) 和 5 种 CVD(包括 CAD、MI、HF、AF 和卒中)之间的因果关系使用大规模全基因组关联研究 (GWAS) 的摘要数据。FinnGen数据集验证了结果。应用了各种 MR 方法、敏感性分析、多变量 MR (MVMR) 和两步 MR 中介分析。

研究结果:MR分析显示,情绪波动对CAD有显著的因果影响(OR=1.45,95%CI 1.24-1.71;P = 5.52e-6)、MI (OR = 1.60,95% CI 1.32-1.95;P = 1.77e-6)、HF(OR = 1.42,95% CI 1.18-1.71;P = 2.32e-4)和卒中(OR = 1.48,95% CI 1.19-1.83;P = 3.46e-4),不包括自动对焦 (P = 0.16)。在反向MR分析中,未观察到因果关系。使用 FinnGen 数据,结果是可重现的。在MVMR分析中,在调整了包括BMI、吸烟和T2DM在内的潜在混杂因素后,情绪波动对CAD、MI、HF和卒中的因果效应仍然显著,但对LDL和高血压没有影响。进一步的中介分析表明,高血压可能介导从心境波动到CAD(18.11%,95%CI:8.83%-27.39%)、心肌梗死(16.40%,95%CI:7.93%-24.87%)、HF(13.06%,95%CI:6.25%-19.86%)和卒中(18.04%,95%CI:8.73%-27.34%)的致病途径。

结论:情绪波动对 CAD、MI、HF 和卒中的发展有显著的因果影响,部分由高血压介导。

5200043d8e8d6c35b3783a190053fe76.png

3.国学者文章介绍(三)

1b3ec8770daa44fd9e3e16f0abd091ea.png

文章题目:微量营养素水平和结直肠息肉风险的遗传预测:孟德尔随机化研究

研究目的:先前的流行病学和实验研究在人类微量营养素水平对结直肠息肉 (CP) 风险的影响方面产生了相互矛盾的结果。在我们的研究中,我们进行了双样本孟德尔随机化 (MR) 调查,以探究 13 种人类微量营养素(钙、硒、镁、磷、叶酸、维生素 B-6、B-12、C、D、β-胡萝卜素、铁、锌和铜)与 CP 的遗传易感性之间的联系。

研究方法:CP (n = 463,010) 汇总统计数据来自泛欧全基因组关联研究,13 种微量营养素的工具变量来自已发表的全基因组关联研究 (GWAS)。在选择合适的工具变量后,我们进行了双样本 MR 研究,使用逆方差加权方法作为我们的主要估计工具,部署敏感性分析来判断异质性和多效性。

研究结果:我们的研究发现,脚趾甲和循环硒或血清β胡萝卜素浓度升高的遗传易感性降低了 CP 发生的风险。然而,其他 11 种微量营养素与 CP 风险之间没有观察到统计学上的显着关联。

结论:研究结果提供了证据,证明微量营养素硒和β-胡萝卜素可能对脑瘫的发展具有保护作用。

f579e7089467b526b8ff8e3ee4bad23d.png

4.国学者文章介绍(四)

e9371cc91b881219476210de73b3d38e.png

文章题目:血液代谢物在介导白癜风与自身免疫性疾病之间关系中的作用:孟德尔随机化研究的证据

研究目的:本研究采用孟德尔随机化(MR)技术研究了白癜风遗传易感性与各种自身免疫性疾病风险之间的因果关系,以及血液代谢物的介导作用。

研究方法: 我们使用对 486 种血液代谢物、白癜风和 9 种自身免疫性疾病的聚合全基因组关联研究 (GWAS) 数据进行了双样本 MR 分析,以研究血液代谢物对白癜风易感性的因果影响以及白癜风与 9 种自身免疫性合并症的关联。我们还应用多变量MR来揭示白癜风影响自身免疫性疾病发病机制的代谢物。

结果: 我们的研究结果表明,白癜风增加了几种自身免疫性疾病的风险,包括类风湿性关节炎(OR 1.17;95% CI 1.08-1.27)、牛皮癣(OR 1.10;95% CI 1.04-1.17)、1 型糖尿病(OR 1.41;95% CI 1.23-1.63)、恶性贫血(OR 1.23;95% CI 1.12-1.36)、自身免疫性甲状腺功能减退症(OR 1.19;95% CI 1.11-1.26)、斑秃(OR 1.22;95% CI 1.10-1.35)和自身免疫性艾迪生病(OR 1.22;95% CI 1.12-1.33)。此外,我们的分析确定了 14 种已知(9 种风险,5 种保护性)和 7 种未表征血清代谢物与白癜风的相关性。在调整遗传预测的组氨酸和丙酮酸水平后,白癜风与这些疾病之间的关联减弱。

结论: 我们证实了白癜风对七种自身免疫性疾病易感性的影响,并对与白癜风相关的血清代谢物进行了彻底调查。组氨酸和丙酮酸是与自身免疫性疾病相关的白癜风的潜在介质。通过将代谢组学与基因组学相结合,我们为白癜风的病因及其免疫合并症提供了新的视角。

5f7a600bc056221d97c761affe7350d6.png

5.国学者文章介绍(五)

53a24d0dc1f4e4c27c9d3ef7725cde9d.png

文章题目:欧洲和东亚人群绿茶摄入量与消化系统癌症风险之间的关联:孟德尔随机化研究

研究目的: 先前的观察性研究表明,饮用绿茶与消化系统癌症(DSC)的发病率降低有关。然而,观察到的关联可能是由于混杂因素造成的。因此,我们使用双样本孟德尔随机化 (MR) 方法来评估绿茶摄入量对五种常见 DSC 风险的因果影响。

研究方法: 在全基因组关联研究中,与欧洲和东亚人群的绿茶消费密切相关的独立遗传变异被选为工具变量,分别涉及多达 64,949 名欧洲人和 152,653 名东亚人。遗传变异和DSC之间的关联是从FinnGen研究和日本生物银行中提取的。使用随机效应逆方差加权 (IVW) 进行初步分析。其他MR分析,包括基于加权模式的估计、加权中位数、MR-Egger回归、孟德尔随机化-多效性残差和异常值(MR-PRESSO)分析,用于敏感性分析。此外,还进行了多变量 MR 设计以调整吸烟和饮酒量。

研究结果: IVW结果显示,在欧洲人群中,茶叶摄入量与DSCs风险之间没有因果关系(食管癌:比值比(OR)=1.044,95%置信区间(CI)0.992-1.099,p=0.096;胃癌:OR=0.988,95%CI 0.963-1.014,p=0.368;结直肠癌:OR=1.003,95%CI 0.992-1.015,p=0.588;肝癌:OR=0.996,95%CI 0.960-1.032,p=0.808;胰腺癌:OR = 0.990,95% CI 0.965-1.015,p = 0.432)。MR-Egger回归、MR-PRESSO分析等方法也证实了该结论的可靠性。同样,在东亚人中,绿茶消费与DSCs的发病率之间没有发现显著关联。即使在调整吸烟和饮酒量后,这种关系也不显著(P > 0.05)。

结论:我们的研究提供了证据表明,遗传预测的绿茶摄入量与欧洲和东亚人群的DSCs的发展没有因果关系。

ec0eededd9bc4a1984cc79f4246dd856.png

6.国学者文章介绍(六)

82eecc2d56ad316e0bd88473ec8f5458.png

文章题目:哮喘与骨质疏松症之间因果关系的横断面研究:孟德尔随机化和生物信息学分析的见解

研究目的:该研究使用来自中国重庆的数据,并采用孟德尔随机化和生物信息学,确定了哮喘和骨质疏松症之间的因果关系,超越了糖皮质激素的影响。哮喘可能通过炎症因子加速骨转换,破坏成骨细胞和破骨细胞之间的偶联,最终导致骨质疏松症,从而导致骨质疏松症。哮喘和骨质疏松症是普遍存在的健康状况,对公共卫生有重大影响。然而,它们潜在的相互作用和潜在机制尚未得到充分阐明。以前的研究主要集中在糖皮质激素对骨质疏松症的影响上,往往忽略了哮喘本身的作用。

研究方法:我们在中国重庆进行了多阶段分层随机抽样,排除了有糖皮质激素使用史的个体。参与者接受了全面的健康检查,并记录了他们的临床数据,包括哮喘状况。采用Logistic回归和孟德尔随机化研究哮喘与骨质疏松症的因果关系。此外,还进行了生物信息学分析和血清生物标志物评估,以探索潜在的机制途径。

研究结果:我们发现哮喘和骨质疏松症之间存在显着关联,这表明存在潜在的因果关系。孟德尔随机化分析为这种因果关系提供了进一步的支持。生物信息学分析表明,几种分子途径可能介导哮喘对骨骼健康的影响。哮喘组血清碱性磷酸酶水平显著升高,提示可能参与骨转换。

结论:我们的研究证实了哮喘和骨质疏松症之间的因果关系,并强调了在骨质疏松症预测模型中考虑哮喘的重要性。它还表明,哮喘可能通过炎症因子增加骨转换,破坏成骨细胞和破骨细胞之间的耦合,最终导致骨质流失,从而加速骨质疏松症。

9f25fdba3e671988d77f4d3763c48f9e.png

7.国学者文章介绍(七)

688f0a250de6566d24a7a3bdf885ffce.png

文章题目:常见精神障碍和自然流产或复发性自然流产的风险:一项双样本孟德尔随机化研究

研究目的:常见精神障碍(焦虑障碍、广泛性抑郁、重度抑郁障碍 (MDD)、双相情感障碍和失眠)与流产或复发性自然流产 (RSA) 之间的直接因果关系尚不清楚。因此,本研究旨在使用孟德尔随机化来探索这些。

研究方法:选择了具有最大样本量的全基因组关联研究 (GWAS) 荟萃分析,并选择了具有欧洲血统的独立单个个体。逆方差加权(IVW)是主要的分析方法。使用 IVW 和 MR-Egger 评估工具变量 (IV) 的异质性,使用 MR-Egger 和 MR-PRESSO 评估 IV 的水平多效性。

研究结果:根据IVW结果,发现4种精神障碍与自然流产有因果关系(焦虑症:OR(95%CI),1.230(1.063-1.420),P=0.0050;重度抑郁症:1.690(1.239-2.307),P=0.0009;双相情感障碍:1.110(1.052-1.170),P=0.0001;失眠:1.292(1.076-1.552),P=0.0060)。此外,在广泛的抑郁症和自然流产之间没有观察到因果关系。五种常见的精神障碍与RSA没有因果关系。

结论: (1)我们的分析仅限于欧洲人群;(2)由于没有可用的信息,没有分析精神障碍的持续时间;(3)很难完全检测遗传多效性。焦虑障碍、MDD、双相情感障碍和失眠可能导致自然流产。因此,我们应该关注孕妇的心理和睡眠健康。未来可能需要研究精神障碍是否直接导致 RSA,尤其是不明原因的 RSA。

23bcb8edbeb1178d87a0f3009d1dcfa6.png

8.国学者文章介绍(八)

e1b37bb78002bc3376a4790eaaa59177.png

文章题目:儿童肥胖对神经质和主观幸福感的因果影响:一项双样本孟德尔随机化研究

研究目的:儿童肥胖与神经质和主观幸福感 (SWB) 有关;然而,它们之间的因果关系仍不清楚。

研究方法: 采用双样本孟德尔随机化 (MR) 分析确定儿童 BMI (n = 39,620) 对神经质 (n = 366,301) 和 SWB (n = 298,420) 的因果影响,使用大规模全基因组关联研究 (GWAS) 的汇总统计。采用逆方差加权(IVW)、加权模式、加权中位数和MR-Egger方法估计因果效应。使用敏感性分析(包括 Cochran's Q 统计量、MR-Egger 截距检验、MR-PRESSO 全局检验和留一 (LOO) 分析来评估潜在的异质性和水平多效性。采用两步MR中介分析探讨神经质对儿童BMI与SWB因果关系的潜在中介作用。

研究结果:我们的研究表明,遗传预测较高的儿童 BMI 与神经质增加(β = 0.045,95% CI = 0.013,0.077,p = 6.066e-03)和 SWB 降低(β = -0.059,95%CI = -0.093,-0.024,p = 9.585e-04)有因果关系。敏感性分析未检测到任何显著的异质性和水平多效性(均> p 为 0.05)。此外,两步MR中介分析表明,儿童BMI与SWB之间的因果关系部分由神经质介导(中介效应占总效应的比例:21.3%,95%CI:5.4%至37.2%,p = 0.0088)。

结论: 从遗传学上讲,较高的儿童BMI与神经质增加和SWB降低有关。有必要进行进一步的研究,以调查体重管理在改善人格和 SWB 方面的潜在分子机制和潜在用途。

d9ce0e1d7f93b1c7a5eca4eb55f7ada9.png

外国学者

1.国学者文章介绍(一)

6fa2309f14f6c1048c812457cdc171b4.png

文章题目:通过孟德尔随机化估计吸烟与腹部肥胖之间的因果关系

研究目的:吸烟者的体重往往比不吸烟者低,但腹部脂肪也更多。目前尚不清楚吸烟与腹部肥胖之间的关系是否是因果关系。先前的孟德尔随机化 (MR) 研究通过依赖吸烟重度的单一遗传变异来研究这种关系。这种方法对多效性效应很敏感,可能会产生不精确的因果估计。我们旨在使用多种遗传仪器估计吸烟和腹部肥胖之间的因果关系。

研究方法来自欧洲血统参与者的全基因组关联研究 (GWAS) 汇总统计数据,来自 GWAS 和酒精和尼古丁使用测序联盟 (GSCAN)、人体测量特征遗传调查 (GIANT) 联盟和英国生物银行。使用汇总效应估计 (CAUSE) 和潜在遗传混杂因素 MR (LHC-MR) 方法进行因果分析的 MR 研究,该方法使用全基因组数据以及双样本 MR (2SMR) 方法检测吸烟。 我们使用GWAS结果作为暴露特征,包括吸烟开始(n = 1 232 091)、终生吸烟(n = 462 690)和吸烟沉重(n = 337 334),以及腰臀比(WHR)和腰臀围(WC和HC)(n至697 734),有和没有调整体重指数(adjBMI),作为结果特征。

研究结果:CAUSE 和 LHC-MR 均表明吸烟开始对 WHR 有正因果效应 (0.13 [95% 置信区间 (CI) = 0.10、0.16 和 0.49 (0.41, 0.57) ) 和 WHR调整BMI(0.07(0.03,0.10)和0.31(0.26,0.37)。同样,他们指出终生吸烟对WHR [0.35(0.29,0.41)和0.44(0.38,0.51)]和WHR有积极的因果关系调整BMI[0.18(0.13,0.24)和0.26(0.20,0.31)]。在随访分析中,吸烟尤其增加了内脏脂肪。没有证据表明皮质醇或性激素具有中介作用。

结论:开始吸烟和终生吸烟时间增加可能导致腹部脂肪分布增加。吸烟导致腹部脂肪增加的特征是内脏脂肪增加。因此,预防和戒烟的努力可以带来减少腹部脂肪的额外好处。

a4ab91256dcdd7394e8a561e596c37e6.png

2.国学者文章介绍(二)

4025769bf30a7ebd34515e37932ac053.png

文章题目:脑出血的危险因素:全基因组关联研究和孟德尔随机化分析

研究目的:脑出血 (ICH) 的遗传和非遗传原因尚不清楚。本研究旨在揭示非物质文化遗产的遗传和可改变的危险因素。

研究方法 我们荟萃分析了来自 3 个欧洲生物库的全基因组关联研究数据,涉及 7605 例 ICH 病例和 711 818 例非病例,以确定与 ICH 相关的基因组位点。为了揭示心脏代谢和生活方式因素与 ICH 的潜在因果关系,我们使用先前全基因组关联研究中确定的遗传仪器进行了孟德尔随机化分析,这些仪器和来自当前全基因组关联研究荟萃分析的 ICH 数据。我们进行了多变量孟德尔随机化分析,以检查已确定的危险因素与 ICH 的独立关联,并评估潜在的中介途径。

研究结果我们确定了位于 APOE 基因组区域的 1 个 ICH 风险位点。该基因座的主要变异为 rs429358 (chr19:45411941),其 ICH 的比值比为 1.17 (95% CI, 1.11-1.20;P=6.01×10-11) 每个 C 等位基因。在多次测试校正后,遗传预测的更高水平的体重指数、内脏肥胖、舒张压、收缩压和终生吸烟指数,以及对 2 型糖尿病的遗传易感性与更高的 ICH 几率相关。此外,腰臀比的遗传增加和对吸烟开始的易感性始终与 ICH 相关,尽管处于名义显著水平 (P<0.05)。多变量孟德尔随机化分析显示,体重指数与ICH之间的相关性在2型糖尿病的调整中减弱,进一步表明2型糖尿病可能是体重指数与ICH关系的中介。

结论: 我们的研究结果表明,APOE位点有助于欧洲人群的ICH遗传易感性。过度肥胖、血压升高、2 型糖尿病和吸烟被确定为 ICH 的主要可改变心脏代谢和生活方式因素。

bc80d21f3bd67b74ad9f7f5c43c755ec.png

3.国学者文章介绍(三)

c001c9951c0388eb07cc4fab91a4eb8f.png

文章题目:LDL-c 降低、缺血性卒中和小血管疾病脑成像生物标志物:孟德尔随机化研究

研究目的:降脂药物靶点对不同缺血性卒中亚型的影响尚不完全清楚。我们旨在探索降脂药物靶点差异影响缺血性卒中亚型风险及其潜在病理生理学的机制。

研究方法: 使用 2 样本孟德尔随机化方法,我们评估了遗传代理低密度脂蛋白胆固醇 (LDL-c) 和 3 种临床批准的低密度脂蛋白降低药物(HMGCR [3-羟基-3-甲基戊二酰辅酶 A 还原酶]、PCSK9 [前蛋白转化酶枯草杆菌蛋白酶/kexin 9 型] 和 NPC1L1 [Niemann-Pick C1 样 1])对卒中亚型和与小血管卒中 (SVS) 相关的脑成像生物标志物的影响,包括白质高信号体积和血管周围空间。

研究结果:在全基因组孟德尔随机化分析中,较低的遗传预测LDL-c与任何中风、缺血性中风和大动脉中风的风险降低

显著相关,这支持了先前的发现。本研究未发现遗传预测的 LDL-c 与心源性栓塞性卒中、SVS 与生物标志物、血管周围间隙和白质高信号体积之间的显著关联。在药物靶点孟德尔随机化分析中,通过抑制 NPC1L1 进行遗传代理降低的 LDL-c 与较低的血管周围间隙几率相关(每 1 mg/dL 降低的比值比为 0.79 [95% CI,0.67-0.93])和 SVS 的比值较低(比值比为 0.29 [95% CI,0.10-0.85])。

结论:本研究提供了支持证据,证明通过抑制 NPC1L1 降低 LDL-c 对血管周围间隙和 SVS 风险具有潜在的保护作用,突出了 SVS 的新治疗靶点。

c9a44fa0136a292675cd20f46e3e1757.png

4.国学者文章介绍(四)

956e386c9d27a8898c7cda6212e4f618.png

文章题目:肠道葡萄糖吸收与早期餐后葡萄糖反应之间因果关系的遗传证据:孟德尔随机化研究

研究目的: 餐后血糖反应是 2 型糖尿病的独立危险因素。从观察上看,口服葡萄糖激发后的早期葡萄糖反应与肠道葡萄糖吸收有关,这在很大程度上受钠-葡萄糖协同转运蛋白 1 (SGLT1) 表达的影响。本研究使用孟德尔随机化 (MR) 来估计肠道 SGLT1 表达对早期葡萄糖反应的因果影响。

研究方法:该研究涉及来自 Atlas Biologique de l'Obésité Sévère 队列的 1,547 名 II/III 级肥胖受试者,使用 SGLT1 基因分型、口服葡萄糖耐量试验和空肠活检来测量 SGLT1 表达。功能丧失的 SGLT1 单倍型作为工具变量,以肠道 SGLT1 表达为暴露,以空腹血糖 (Δ30 葡萄糖) 30 分钟负荷后血糖的变化为结果。

研究结果:结果显示,1,342 例基因型患者中有 12.8% 携带 SGLT1 功能丧失单倍型,平均 Δ30 葡萄糖降低 -0.41 mmol/L,肠道 SGLT1 表达显著降低。观察性研究将 SGLT1 表达的 1-SD 降低与 -0.097 mmol/L 的 Δ30 葡萄糖降低联系起来。MR 分析与这些发现相似,将遗传仪器化肠道 SGLT1 表达的统计学显著降低与 Δ30 葡萄糖降低 -0.353 相关联。

结论:总之,MR 分析提供了遗传证据,表明降低肠道 SGLT1 表达因果关系会降低早期负荷后葡萄糖反应。这一发现对管理早期葡萄糖反应以预防或治疗 2 型糖尿病具有潜在的转化影响。

efe92338ff03c14538d693b6faefb93e.png

其他一区文章:

中国学者

e500bac8ff7617ba2b3e9859cc548ff6.png

外国学者

f6ce22c2e1ce0e67a6649de81ddeabf6.png

一个专门做公共数据库的公众号,关注我们


详情请点击下方:

两天掌握孟德尔随机化高级方法:多变量、中介、药靶。。。。

样本孟德尔随机化(Single-Sample Mendelian Randomization, SS MR)是一种遗传统计方法,用于研究一个暴露因素(如某种生物标志物水平)与疾病风险之间的潜在因果关系。该方法利用个体基因型作为工具变量,来估计暴露因素对结果变量(如疾病状态)的因果效应。在这种方法中,通常需要至少一个遗传变异(SNP)与暴露因素强烈相关,但与结果变量之间没有直接的生物学联系。 单样本孟德尔随机化的代码实现通常涉及以下步骤: 1. 数据准备:收集个体的基因型数据、暴露因素测量值和可能的协变量信息。 2. 工具变量选择:筛选与暴露因素相关的SNP,进行基因型与暴露因素的相关性分析。 3. 回归分析:利用线性回归或逻辑回归模型,以工具变量作为预测变量,暴露因素作为因变量进行回归分析,从而估计暴露因素与结果变量之间的关系。 4. 因果推断:根据工具变量回归分析的结果推断暴露因素对结果变量的因果效应。 实现单样本孟德尔随机化分析可能需要使用统计软件或编程语言,如R或Python,并可能用到专门的统计包或库,例如在R中的`TwoSampleMR`或者`MendelianRandomization`包。 以下是一个简化的R语言伪代码示例,说明如何使用单样本孟德尔随机化分析的步骤: ```r # 安装和加载必要的包 install.packages("MendelianRandomization") library(MendelianRandomization) # 假设已有数据集包含以下列:SNP, Expose, Outcome data <- read.csv("data.csv") # 选择工具变量 instrumental_variables <- select_ivs(data, snp_column = "SNP", exposure_column = "Expose") # 进行单样本孟德尔随机化分析 mr_results <- mr(ivs = instrumental_variables, exposure = "Expose", outcome = "Outcome") # 输出结果 print(mr_results) ``` 需要注意的是,上述代码仅为说明性质,并非真实的可执行代码。实际操作时需要根据数据格式和分析需求编写具体的代码,并且确保数据的质量和分析方法的适用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值