暴雨笔记

暴雨

定义:暴雨日和大暴雨日定义为 20 时至次日 20 时日累计降水量分别高于 50 和 100 mm。
定义2:暴雨(英文名称 torrential rain;rainstorm;storm )是指降水强度很大的雨,常在积雨云中形成。中国气象上规定,每小时降雨量16毫米以上、或连续12小时降雨量30毫米以上、24小时降水量为50毫米或以上的雨称为“暴雨”(中国气象局)

暴雨相关各种定义

区域暴雨的准确定义

吐了
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
不管了都是5%那我也来!!!!!!!!
就按这个当合成分析的标准了

在这里插入图片描述
单站暴雨定义与暴雨定义相似,区域暴雨为10站以上,区域暴雨过程为连续2d以上区域暴雨。
在这里插入图片描述
这个没什么用不常见
在这里插入图片描述
持续性暴雨的客观定义,三天以上
在这里插入图片描述
在这里插入图片描述
区域持续性暴雨
在这里插入图片描述
花式灌水指数,mark一下
在这里插入图片描述
这个定义很搞笑看起来是随便定义的区域暴雨
在这里插入图片描述
这个比较专业,考虑到了间断。
在这里插入图片描述
暴雨年鉴中的定义
总之对应区域暴雨的定义真的是五花八门

资料预处理

在这里插入图片描述
我喵的直接带nan运算问题是差值的话尤其对暴雨来说误差是否会很大呢?可以重新试试
在这里插入图片描述

暴雨40年改革开放综述总结

研究意义

  • 极端降水带来危害
    暴雨属于极端降水带来的危害
  • 在这里插入图片描述
    受东亚季风影响。
  • 在这里插入图片描述
    东南-西北走向分布明显。

在这里插入图片描述
如图实例硕士论文后期可以参考如下物理过程解释虽然我对东西是真没什么兴趣:
1.低空急流,关键词:湿静力能,风切变,辐合
2.锋面,关键词:干湿比,位势温梯度
3.副高,关键词:全形位涡方程什么的,各种震荡

中国暴雨气候特征

灾害相关

在这里插入图片描述

台风暴雨

心态崩了啊擦!!!!!居然是减少的真的受不了这鬼东西了
在这里插入图片描述
心态崩了呀,只求能毕业!!!!!!!
在这里插入图片描述

暴雨统计灌水工具

1.线性趋势,呵呵必有

2.Reof区划用的
贴上本人用python实现的reof,帖子都好几个月了竟然没几个人回复,再一次说明调包真的没什么意义纯体力活,深入理解算法才行:
python实现reof,深入理解varimax算法
很显然少有能对此算法深刻理解的气象工作者,我顺手截一些靠谱的解释,看了很多中文文章发现有不少错:
在这里插入图片描述
其实如果你仔细想想,小波分析和功率谱,较之eof和reof是不是有些相似之处呢,小波相当于在时间轴上的细化功率谱,旋转eof相当于空间轴上的细化eof,功率谱和eof讲究共性,相似性提取的是整体特征,后者分别在时间和空间上进行细节研究,突然间就有了点意思呢。
尽管此论文作者对reof的理解远远高于NCL调包选手,但仍有一些问题比如:
在这里插入图片描述
这里是有问题的他只选择了60%的6个特征向量来旋转,实际上只能占到总方差30%而非60%
2.1reof完了后可以进行分维分析
在这里插入图片描述

3.小波分析,功率谱
本人对小波分析的算法进行了一次深入的分析,以及在气象中的应用,参考本人小波分析的帖子:小波分析算法深入理解

4.m-k突变检验
需要注意的是按照黄书中的定义来看,uf正序>0那么就说明是上升的,交点是并非负-正的转变,而是无显著上升和下降趋势的点,这里面有些含糊不清魏的书中也是草草带过那么我也懒得搞懂,属实浪费时间

5.环流分型(一般到这就是稍微好一点的核心了,各种天南地北形)

使用优化的思想来找关键区域

气象科(guan)研(shui)工作者常常要面临两个很严肃又棘手的问题,其一找不到关键区域,其二不过检验,不过检验是个很头疼的问题,虽然我已经撕了很多遍统计但我仍想不通89%与90%的置信度在气象文章就有如此大的天差地别,听闻舍友的经历感慨万千,他在做2个样本的差值t检验时因为n小始终不过检验,这当然也符合常理n很小时分布不会是正态的,但为了做(bian)下(gu)去(shi),以至于使用蒙特卡洛模拟去检验,当然还有跑100万次去凑过检结果的令人唏嘘不已的事情,那么如何使用优化的思想去寻找科学的真理(cou jie guo)呢?本笔记记录一个方法去找某个区域有过检趋势,当然也可以去找两个未定区域过检相关。

  • 目的:找到我国南方某个区域的某个统计量具有明显的增加趋势,且通过指定显著水平a的显著性检验
  • 将其转化成一个带约束最小化问题:
    在这里插入图片描述
    其中f(x)就是统计量,x是一个四维变量,分别是给定初始点到东西南北方向的距离,也就是地图上矩形框的大小,约束条件bounds就是要找的区域内的范围,不然就成了没有范围限制的优化了,另一个不等式条件就是通过显著性检验即p_value<a。

需要注意的坑是slsqp优化方法是局部优化,经过我的查找,全局带约束最小化需要用scipy里的shgo算法,当然也可以指定slsqp在shgo里用来找最后几个梯度。

程序如下:
首先定义一个优化函数,-将max问题转化成min问题,因为我想找增加的线性趋势

        def optmize_func(x):
            optdata = density_data.sel(lon=slice(115-x[0],115+x[1]),lat=slice(25-x[2],25+x[3]))
            optdata = optdata.sum(dim=('lon','lat')).values
            optdata = standardization(optdata)
            slope, _, _, p_value, _ = stats.linregress([i for i in range(len(optdata))],optdata)
            return -slope

其次是不等式约束,即过a=0.01显著水平的检验

        ineq_cons = {'type': 'ineq',
                    'fun' : lambda x: np.array(0.01-stats.linregress([i for i in range(40)],standardization(density_data.sel(lon=slice(115-x[0],115+x[1]),lat=slice(25-x[2],25+x[3])).sum(dim=('lon','lat')).values))[3])}

第三步给出bounds将范围限制在中国区域内使用shgo算法进行优化

        from scipy.optimize import shgo
        #最优 [11.25, 11.25, 11.25,  3.75]
        bounds = [(-5,15.),(-5,15.),(-5,12),(0,15)]
        resshgo = shgo(optmize_func,bounds,constraints=ineq_cons,iters=3)
        print(resshgo)
        res = resshgo

最后res.x返回结果,这样我就能找到中国区域某个要素统计量最大的增长趋势并且过指定a显著性水平检验,求相关合成差值同理。

搞笑的是我还试了贝叶斯优化,当然好像是不能带约束的但是可以输出多步迭代的值供参考。程序如下:

        from bayes_opt import BayesianOptimization
        def optmize_func(xr,xl,yr,yl):
            optdata = density_data.sel(lon=slice(115-xr,115+xl),lat=slice(25-yr,25+yl))
            optdata = optdata.sum(dim=('lon','lat')).values
            optdata = standardization(optdata)
            slope, _, _, p_value, _ = stats.linregress(optdata,[i for i in range(len(optdata))])
            return slope

        rf_bo = BayesianOptimization(
                optmize_func,
                {'xr': (0, 10),
                'xl': (0, 10),
                'yr': (0, 10),
                'yl': (0, 10)}
                )
        rf_bo.maximize()

希望这个方法能帮你从苦海中解脱出来,不至于用蒙特卡洛跑100万次这种令人难受的事情发生

气旋暴雨贡献统计笔记

nature关于气旋的文章

先安排一波这个,保佑我中期能过!!!
在这里插入图片描述
看看台风影响降水的。看看能不能先从台风的角度找到暴雨量上升的原因:
在这里插入图片描述
首先文献摘要部分指出有用的信息是,气候变暖->海温增加->水份变多->衰减减慢
在这里插入图片描述
经过统计发现飓风更加持久了:
在这里插入图片描述
这个水份的增加最后变成降水增多:
在这里插入图片描述

引发暴雨的江淮气旋统计

首先识别气旋作出数据集
在这里插入图片描述
判定引起暴雨的气旋条件:
在这里插入图片描述
摘出来一些有用的:
在这里插入图片描述
这个方法可以直接拿来用:
求雨量的趋势跟这个套路是一样的
在这里插入图片描述

台风暴雨

台风暴雨总结和展望

沿海台风引起的暴雨远远超过内陆地区
在这里插入图片描述
在这里插入图片描述
台风降水客观识别方法
OSTA方法
看看究竟是什么鬼
在这里插入图片描述
先看看2001年最早的识别方法:
冲冲冲!!!!
首先是分离雨带
在这里插入图片描述
获取临站降水率
在这里插入图片描述
找到雨带中心:
ps:这方法一看就是搞笑的很粗糙好吧
在这里插入图片描述
定义雨带的主要特征:
找到有限个不同型的雨带
在这里插入图片描述
找到雨带边缘:
在这里插入图片描述
找到可能是台风雨带:
在这里插入图片描述
最后一步识别台风雨带:
在这里插入图片描述

osta流程图:
在这里插入图片描述

相关研究可以参考:
在这里插入图片描述
台风暴雨的类型:
在这里插入图片描述
终于找到个能编下去的论据了:
在这里插入图片描述
直接冲好吧:
在这里插入图片描述
看完发现这个冲不了太粗糙了!

极端降水套路

暴雨和极端降水差不多可以参考
看看极端降水和海气的关系
在这里插入图片描述
在这里插入图片描述
计算台风登录和衰减系数
在这里插入图片描述
在这里插入图片描述

参考文献

  1. 罗亚丽, 孙继松, 李英, et al. 中国暴雨的科学与预报:改革开放40年研究成果[J]. 气象学报, 2020(3).
  2. 邹进上,王梅华,张薇.中国暴雨区划初步研究[J].地理学报,1987(02):151-164.
  3. 孔锋,方建,吕丽莉.1961—2015年中国暴雨变化诊断及其与多种气候因子的关联性研究[J].热带气象学报,2018,34(01):34-47.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值