集成学习算法

集成学习:通过建立几个模型来解决单一预测问题;
工作原理:生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成组合预测,因此优于任何一个单分类的做出预测。(只要单分类器的表现不太差,集成学习的结果总是要好于单分类器的)

1 集成学习的两个核心任务

  • 任务一:如何 优化 训练数据 —> 主要用于解决 欠拟合 问题
  • 任务二:如何 提升 泛化性能 —> 主要用于解决 过拟合 问题

2 Boosting和Bagging集成原理

在这里插入图片描述
在这里插入图片描述

2.1 Bagging集成过程

(1)采样 — 从所有样本里面,采样一部分
(2)学习 — 训练弱学习器
(3)集成 — 使用平权投票

  • Bagging + 决策树/线性回归/逻辑回归/深度学习… = bagging集成学习方法
  • 经过上面方式组成的集成学习方法:
    (1)均可在原有算法上提高约2%左右的泛化正确率;
    (2)简单, 方便, 通用。

2.2 Boosting集成过程

(1)初始化训练数据权重,初始权重是相等的
(2)通过这个学习器,计算错误率
(3)计算这个学习器的投票权重
(4)对每个样本进行重新赋权
(5)重复前面1-4
(6)对构建后的最后的学习器进加权投票

  • 随着学习的积累从弱到强,简而言之:每新加入一个弱学习器,整体能力就会得到提升
  • 代表算法:Adaboost,GBDT,XGBoost
  • 梯度Boosting决策树(GBDTGradient Boosting Decision Tree)
    GBDT = 梯度下降 + Boosting + 决策树
  • XGBoost
    XGBoost= 二阶泰勒展开+boosting+决策树+正则化

2.3 Bagging集成与Boosting集成的区别

集成算法区别Bagging集成Boosting集成
数据方面对数据进行采样训练根据前一轮学习结果调整数据的重要性
投票方面所有学习器平权投票对学习器进行加权投票
学习顺序学习是并行的,每个学习器没有依赖关系学习是串行,学习有先后顺序
主要作用主要用于提高泛化性能
(解决过拟合,也可以说降低方差)
主要用于提高训练精度
(解决欠拟合,也可以说降低偏差)

3 随机森林

  • 在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。
  • 随机森林 = Bagging集成 + 多个弱决策树
    随机森林
  • 例如, 如果你训练了5个树, 其中有4个树的结果是True, 1个树的结果是False, 那么最终投票结果就是True
  • 随机森林够造过程中的关键步骤(M表示特征数目):
    ​ (1)一次随机选出一个样本,有放回的抽样,重复N次(有可能出现重复的样本)
    ​ (2) 随机去选出m个特征, m <<M,建立决策树
  • 思考1.为什么要随机抽样训练集?
    如果不进行随机抽样,每棵树的训练集都一样,那么最终训练出的树分类结果也是完全一样的
  • 思考2.为什么要有放回地抽样?
    如果不是有放回的抽样,那么每棵树的训练样本都是不同的,都是没有交集的,这样每棵树都是“有偏的”,都是绝对“片面的”(当然这样说可能不对),也就是说每棵树训练出来都是有很大的差异的;而随机森林最后分类取决于多棵树(弱分类器)的投票表决。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值