spark的数据倾斜和优化

数据倾斜

4.1. 什么是数据倾斜,现象是什么?

​ 所谓数据倾斜(data skew),其实说白了,由于数据分布不均匀造成计算时间差异很大,产生了一些列异常现象。

​ 常见的现象有两种:

  1. 个别task作业运行缓慢

    ​ 大多数的task运行都很快速,但是极个别的task运行非常缓慢,甚至是正常task运行时间好多倍。
    莫名其妙的OOM异常

这是一种相对比较少见的现象,正常运行的task作业,突发发生了一个OOM异常。但是这只是一种假设,需要验证,因为流量的突然暴增也会经常导致OOM异常。

发生数据倾斜的原因是什么

宽依赖了,也就是shuffle操作。shuffle操作说白了就是将key相同的数据经过网络拉取到同一个节点上的同一个partition中进行聚合操作。加入绝大多数key都对应10条数据,但是有个别key对应的数据量10w条,所以经过shuffle操作之后,这特殊key的10w+的数据会到一个分区中去,而其它分区数据量相对正常,可不就造成了个别task任务执行时间是其它普通task的若干倍。

​ 请问,shuffle操作是发生数据倾斜的什么条件?

​ 必要条件。

4.3. 如何解决数据倾斜

4.3.1. 解决的思路

​ 我们已经知晓发生的原因是由于某些key对应的数据量过多操作的,所以我们首先需要找到这些key,问题在于如何找到这些key?显然不能基于全量的数据找,只能抽样,使用sample算子进行处理。

​ 找到这些key之后,需要进行分拆(最常见的处理思路:加随机前缀),最后进行全局处理。

4.3.2. 在Hive ETL中做预处理

​ 这个处理的方法,主要在于Spark作业加载hive表中的数据,进行业务处理。假如hive的数据有倾斜现象,在spark中的处理,自然会出现dataskew。而如果spark作业一般只是想web 端提供查询服务,针对这种情况就比较适合这个解决方法。

​ Hive ETL预处理,数据倾斜的现象在hive中提前被处理,这样加载到spark中的数据有倾斜吗?没有!此时spark给web服务端只提供一个查询服务,所以没有的数据倾斜,效率非常高!只不过此时将数据倾斜解决掉了吗?是把spark端的dataskew转移到hive中。

4.3.3. 过滤掉发生数据倾斜的key

​ 找到哪些发生数据倾斜的key,同时必须要想业务人员确认这些key是否有用,如果没用直接使用filter算子过滤掉就行。

​ 以后在工作中,切忌,但凡是删除、过滤、更新等待操作,一定慎重。

4.3.4. 提高程序并行度

​ 程序运行缓慢,第一反应大多是资源分配不足,并行度不够。提高并行度是我们做数据倾斜调优的第一步尝试,提高并行度会在一定程度上减轻数据倾斜的压力,但是并不能从彻底上根除数据倾斜。因为一旦发生数据倾斜,倾斜的key无论如何提高并行度,经过shuffle操作都会直到一个分区中去。

​ 如何提高并行度?两个地方进行设置。

  1. ​ spark.default.parallelism 设置spark程序全局并行度

  2. shuffle操作的第二个参数进行设置(局部)并行度

    [外链图片转存失败(img-aJKY0UDX-1563632668215)(G:/%E5%85%89%E7%8E%AF%E5%A4%A7%E6%95%B0%E6%8D%AE/2019-06-24-%5Bspark-optimization%5D(1)]/%E6%96%87%E6%A1%A3/assets/1561346170884.png)

    [外链图片转存失败(img-08LGlppa-1563632668220)(G:/%E5%85%89%E7%8E%AF%E5%A4%A7%E6%95%B0%E6%8D%AE/2019-06-24-%5Bspark-optimization%5D(1)]/%E6%96%87%E6%A1%A3/assets/1561346192356.png)

4.3.5 进行两阶段聚合

4.3.5.1. 原理示意图

​ 两阶段聚合操作,指的是局部聚合+全局聚合。该方法适合于哪些XxxxByKey的操作,比如groupByKey、reduceByKey的聚合操作。

[外链图片转存失败(img-ElkEZllK-1563632668223)(assets/1561344158711.png)]

4.3.5.2. 代码实现
object _01TwoStageDataskewOps {
    def main(args: Array[String]): Unit = {
        val conf = new SparkConf()
            .setAppName("_01TwoStageDataskewOps")
            .setMaster("local[2]")

        val sc = new SparkContext(conf)

        val list = List(
            "hello hello hello hello you you hello",
            "hello hello hello you you hei hei hello hello hello"
        )
        val listRDD = sc.parallelize(list)

        val pairsRDD:RDD[(String, Int)] = listRDD.flatMap(line => {
            line.split("\\s+")
        }).map((_, 1))
        //step 1、确认发生数据倾斜的key --->sample算子
        val sorted = pairsRDD.sample(true, 0.6).countByKey().toList.sortWith((m1, m2) => m1._2 > m2._2)
        println("抽样数据排序之后的结果:")
        println(sorted.mkString("\n"))
        //step 1.1 获取发生数据倾斜key
        val dataskewKey = sorted.head._1
        println("发生数据倾斜的key为:" + dataskewKey)
        //step 2、加随机前缀
        val prefixPairsRDD = pairsRDD.map{case (word, count) => {
            if(word == dataskewKey) {
                val random = new Random()
                val prefix = random.nextInt(2)
                (s"${prefix}_${word}", count)
            } else {
                (word, count)
            }
        }}
        println("=============step 2、加随机前缀数据===================")
        prefixPairsRDD.foreach(println)
        //step 3、局部聚合
        val partAggrRDD:RDD[(String, Int)] = prefixPairsRDD.reduceByKey(_+_)
        println("=============3、局部聚合结果===================")
        partAggrRDD.foreach(println)
        //step 4、去掉随机前缀
        val unPrefixPairsRDD = partAggrRDD.map{case (word, count) => {
            if(word.contains("_")) {
                (word.substring(2), count)
            } else {
                (word, count)
            }
        }}
        println("=============step 4、去掉随机前缀的数据===================")
        unPrefixPairsRDD.foreach(println)
        //step 5、进行全局聚合
        val fullAggrRDD = unPrefixPairsRDD.reduceByKey(_+_)
        println("=============step 5、进行全局聚合===================")
        fullAggrRDD.foreach(println)
        sc.stop()
    }
}

4.3.6. 使用map-join代替reduce-join

​ 这个操作主要是针对join类的聚合操作,多表关联,前提条件是大小表关联。

​ 所谓reduce-join操作就是很直白的调用join算子,执行操作,这个过程是有shuffle的。

​ 所谓map-join操作呢,将小表广播到各个executor,在map类算子中完成关联操作。

​ 这个操作,请问,从根本上解决了数据倾斜了没有?从根本上解决了数据倾斜,因为有map-join代替reduce-join没有shuffle操作,肯定就没有数据倾斜了。

​ 参见之前广播变量使用的代码。

4.3.7. 使用采样key并分拆进行聚合

​ join操作的是两张大表,一张表正常,一张表中有个别key异常,其余正常。怎么办?

4.3.7.1. 原理示意图

[外链图片转存失败(img-VLJzuA9Y-1563632668225)(assets/1561348413530.png)]

4.3.7.2. 代码实现
object _02SplitKeyExtendOps {
    def main(args: Array[String]): Unit = {
        val conf = new SparkConf()
            .setAppName("_01TwoStageDataskewOps")
            .setMaster("local[2]")

        val sc = new SparkContext(conf)
        val left = List(
            ("hello", 1),
            ("hello", 2),
            ("hello", 3),
            ("you", 1),
            ("me", 1),
            ("you", 2),
            ("hello", 4),
            ("hello", 5)
        )
        val right = List(
            ("hello", 11),
            ("hello", 12),
            ("you", 11),
            ("me", 12)
        )
        val leftListRDD:RDD[(String, Int)] = sc.parallelize(left)
        val rightListRDD:RDD[(String, Int)] = sc.parallelize(right)
        //step 1、采样找到异常的key
        val sampledRDD = leftListRDD.sample(true, 0.8)
        val sorted = sampledRDD.countByKey().toList.sortWith((m1, m2) => m1._2 > m2._2)
        println("排序之后的采样数据:" + sorted.mkString("\n"))
        val dataskewKey = sorted.head._1
        /*
            step 2、根据异常的key将左右表都拆分正常的数据和异常的数据
         */
        val dsLeftRDD:RDD[(String, Int)] = leftListRDD.filter{case (word, count) => word == dataskewKey}
        val commonLeftRDD:RDD[(String, Int)] = leftListRDD.filter{case (word, count) => word != dataskewKey}

        val dsRightRDD:RDD[(String, Int)] = rightListRDD.filter{case (word, count) => word == dataskewKey}
        val commonRightRDD:RDD[(String, Int)] = rightListRDD.filter{case (word, count) => word != dataskewKey}

        println("step 2、根据异常的key将左右表都拆分正常的数据和异常的数据")
        println("左表异常数据:")
        dsLeftRDD.foreach(println)
        println("左表正常数据:")
        commonLeftRDD.foreach(println)
        //step 3、对左表异常数据添加N以内的随机前缀
        println("step 3、对左表异常数据添加N以内的随机前缀")
        val prefixLeftRDD = dsLeftRDD.map{case (word, count) => {
            val random = new Random()
            val prefix = random.nextInt(2)
            (s"${prefix}_${word}", count)
        }}
        prefixLeftRDD.foreach(println)
        //step 4、对右表异常数据进行N倍的扩容
        println("step 4、对右表异常数据进行N倍的扩容")
        val prefixRightRDD = dsRightRDD.flatMap{case (word, count) => {
            val ab = ArrayBuffer[(String, Int)]()
            for(i <- 0 until 2) {
                ab.append((s"${i}_${word}", count))
            }
            ab
        }}
        prefixRightRDD.foreach(println)
        /**
          * step 5、分别对异常数据和正常数据进行join操作
          */
        println("step 5、分别对异常数据和正常数据进行join操作")
        val commonJoinedRDD = commonLeftRDD.join(commonRightRDD)

        val dsJoinedRDD = prefixLeftRDD.join(prefixRightRDD)
        println("5.1 正常数据join的结果")
        commonJoinedRDD.foreach(println)
        println("5.2 异常数据join的结果")
        dsJoinedRDD.foreach(println)
        //5.3 去掉异常数据的随机前缀
        val dsFinalJoinedRDD = dsJoinedRDD.map{case (word, count) => {
            (word.substring(word.indexOf("_") + 1), count)
        }}
        //step 6、全局的union操作,前提是去掉step5中的异常数据的前缀
        val finalJoinedRDD = dsFinalJoinedRDD.union(commonJoinedRDD)
        println("step 6、全局的union操作,前提是去掉step5中的异常数据的前缀")
        finalJoinedRDD.foreach(println)

        sc.stop()
    }
}

​ 扩展,两张大表,左表全量异常,右表正常。

​ 没有好的解决方案,左表全量加N以内的随机前缀,右表全量进行N倍的扩容。可能会有的问题,扩容之后的存储压力非常大,可能发生OOM异常。

​ 这个方案4.3.7,实际上是以空间换时间。

4.3.8. 多种手动多管齐下

​ 如果说上述的单一操作解决不了问题怎么办?那就一起上!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值