离散随机变量(概率导论第二章)

本文深入探讨了离散随机变量的概念,包括其分布列、期望和方差。介绍了如何计算随机变量的期望值,以及随机变量函数的期望规则。此外,还讨论了多个随机变量的联合分布列、条件期望以及独立性的概念。
摘要由CSDN通过智能技术生成

离散型随机变量

1. 离散随机变量的相关概念

在一个试验的概率模型之下:

  • 离散随机变量是试验结果的一个实值函数,但是他的取值范围只能是有限多个值或可数无限多个值。
  • 一个离散随机变量有一个分布列,他对于随机变量的每一个取值,给出一个概率。
  • 离散随机变量的函数也是一个离散随机变量,他的分布列可以从原随机变量的分布列得到。

2. 分布列

随机变量 X X X的分布列的计算

对每一个随机变量 X X X的值 x x x:

  1. 找出与事件 X = x {X=x} X=x相对应的所有试验结果。
  2. 将相应的试验结果的概率相加得到 p X ( x ) p_X(x) pX(x)
  3. 分布列满足归一化定理, ∑ x p X ( x ) = 1 \sum_xp_X(x)=1 xpX(x)=1

3. 随机变量函数

X X X是一个随机变量,对 X X X施行不同的变换,可以得到其他的随机变量。

X X X表示今天的气温(单位为摄氏度, ∘ C ^{\circ}C C)。做变换 Y = 1.8 X + 32 Y=1.8X+32 Y=1.8X+32得到华氏温度的度数( ∘ F ^{\circ}F F)。在这里 Y Y Y X X X的线性函数
Y = g ( X ) = a X + b Y = g(X) = aX+b Y=g(X)=aX+b
其中的 a a a b b b是常数。我们也可以考虑 X X X的非线性函数
Y = g ( X ) Y = g(X) Y=g(X)
例如指数数,此时的变换为 g ( X ) = e X g(X) = e^X g(X)=eX

Y = g ( X ) Y = g(X) Y=g(X)是随机变量 X X X的函数。那么对 Y Y Y来说也是一个离散型随机变量,叫做 p Y ( y ) p_Y(y) pY(y)。此时对每一个固定的 y y y值, p Y ( y ) p_Y(y) pY(y)的值可以通过下式计算
p Y ( y ) = ∑ { x ∣ g ( x ) = y } p X ( x ) p_Y(y) = \sum_{\{x|g(x)=y\}} p_X(x) pY(y)={ xg(x)=y}pX(x)

4. 期望,均值和方差

4.1 期望

设随机变量 X X X的分布列为 p X p_X pX X X X期望值有下式给出:
E [ X ] = ∑ x x p X ( x ) E[X] = \sum_x xp_X(x) E[X]=xxpX(x)

4.2 随机变量的函数期望规则

设随机变量 X X X的分布列为 p X p_X pX,又设 g ( X ) g(X) g(X) X X X的一个函数,则 g ( X ) g(X) g(X)的期望有下列公式得到
E [ g ( X ) ] = ∑ x g ( x ) p X ( x ) E[g(X)] = \sum_x g(x)p_X(x) E[g(X)]=xg(x)pX(x)

4.3 方差

随机变量的方差有下列公式所定义:
v a r ( X ) = E [ ( X − E [ X ] ) 2 ] var(X)=E[(X-E[X])^2] var(X)=E[(XE[X])2]
并且可以用下式进行计算:
v a r ( X ) = ∑ x ( x − E [ X ] ) 2 p X ( x ) var(X) = \sum_x (x-E[X])^2p_X(x) var(X)=x(xE[X])2pX(x)
用矩表达的方差公式如下:
v a r ( X ) = E [ X 2 ] − ( E [ X ] ) 2 var(X) = E[X^2] - (E[X])^2 var(X)=E[X2](E[X])2
除非 g

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值