stata 蒙特卡罗模拟(一) 一元线性回归模拟

文章通过蒙特卡罗模拟展示了在不同样本量下,线性回归模型对总体回归函数的逼近情况。在小样本(30个)和大样本(10000个)的情况下,模拟结果显示,随着样本量增加,回归系数和常数项更接近真实值,验证了大样本下的线性回归更准确。同时,文章通过图形对比进一步说明了这一现象。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

蒙特卡罗模拟因摩纳哥著名的赌场而得名。它能够帮助人们从数学上表述物理、化学、工程、经济学以及环境动力学中一些非常复杂的相互作用。

在线性回归模型中,我们通过理论学习,可以采用最小二乘法求解回归系数,然而,现实中总体回归方程总是未知的,我们如何知道样本是否较好的揭示了总体的特征呢?我们可以用蒙特卡罗模拟来验证线性回归的性质。

一、考虑如下数据生成过程或总体回归函数:

y_{i} = 3 + 2x_{_{i}}+u_{i}

假设自变量x和随机扰动项u分别服从正态分布:

x\sim N(4,9), u\sim N(0,4)

1. 当样本量不太大时,比如抽取30个样本,我们做回归:

clear //删除内存中已有数据
set obs 30  //确定抽取样本量为30
set seed 12345 //设定种子,方便重复验证
gen x = rnormal(4,9)   //得到服从正态分布均值为4,方差为9的随机数,作为x
gen u = rnormal(0,4)   //得到服从正态分布均值为0,方差为4的随机数,作为随机扰动u
gen y = 3 + 2*x + u    //按真实的总体回归函数计算y
reg y x   //做y对x的回归,检验回归结果与真实结果的差异

回归结果如下:

可以看出,当样本量为30的时候,回归系数为1.925,和我们真实回归系数2比较接近,常数项3.11和真实的3也比较接近,整体效果良好。

2. 为了验证大样本的性质,我们继续设置样本量为10000,再进行同样的操作(和上述代码相同,仅将set obs 30修改为 set obs 10000) 

clear //删除内存中已有数据
set obs 10000  //确定抽取样本量为30
set seed 12345 //设定种子,方便重复验证
gen x = rnormal(4,9)   //得到服从正态分布均值为4,方差为9的随机数,作为x
gen u = rnormal(0,4)   //得到服从正态分布均值为0,方差为4的随机数,作为随机扰动u
gen y = 3 + 2*x + u    //按真实的总体回归函数计算y
reg y x   //做y对x的回归,检验回归结果与真实结果的差异

回归结果:

此时,我们发现回归系数2.0045,更加接近真实数据2,常数项3.04更接近真实数据3,验证了样本量越大,越接近真实结果的结论。 

二、图形展示回归结果

为了更好的比较真实值与回归模拟值,我们可作图:

twoway function PRF = 3 + 2*x,range(-3 13) || scatter y x || lfit y x,lpattern(dash)

结果如下:

这是10000个样本的 图,显得比较密集,如果做30个样本的图,则更清晰。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哈伦2019

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值