stata基本操作(一)

1.数据导入方法(两种方式)
(1)在菜单data----data editor中,  将原始数据复制粘贴到表格中,注意第一行是否变量名
(2)菜单file-import ,然后导入对应格式数据(或者用命令import 文件格式 路径 文件名 第一行是否变量名等)
导入后,可利用菜单file---Save as进行保存,保存成stata格式,后缀为 .dta

以陈强老师的高级计量经济学数据为例,导入数据

import excel "I:\陈强高级计量经济学及stata应用(第二版)全部数据\nerlove.xls", sheet("NERLOVE") firstrow

或者菜单file---import---Excel

                                                

2.打开数据
     采用file--open 打开数据,这里主要打开stata自身格式的数据。注意:日期数据导入到 stata内部,所有日期变量的存储格式均为“elapsed data",从1960年1月1日到目前经历了多少单位(年、月、日)

3.变量标签
  在菜单data ---variables Manager下进行变量属性设置, 注意stata区分大小写

 

4.数据基本展现
(1)数据概貌
  describe  描述数据样本量、变量数、变量属性等,可简写为“d"  

                                 

(2)看变量具体数值
list v1 v2 看变量名为v1、v2的数值,如果只想看前5个数值,可用list v1 v2 in 1/5,

如果要观察第21到28个观测值,则用list v1 v2 in 21/28

                                  

 

 

如果要看满足条件的数据,比如q >=10000条件下的v1 v2,则可用list v1 v2 if q>=10000,不等于表示为~=

                                                               

(3)数据的统计特征
 描述统计用summarize v1 将显示变量v1的均值,最大,最小,标准差等描述统计量(可简写为su)

                               
满足条件的可以用 if       su v1 if q>10000


如果想看百分位数,偏度,峰度等可使用 su v1,detail

 显示变量的经验累积分布函数,可使用 tabulate v1


       显示变量间相关系数可用 pwcorr v1 v2 v3,sig star(0.05) sig表示显示显著性水平,star表示小于等于0.05的打上星号,不指定变量表示对数据集所有变量求相关系数

 

 

 

 

 

### Stata 中面板数据的基本操作 #### 导入并设置面板数据 为了处理面板数据,在导入数据之后,需指定个体和时间变量来定义面板结构。例如: ```stata webuse nlswork2, clear xtset idcode year ``` 这条命令加载了个名为 `nlswork2` 的内置数据集,并设置了 `idcode` 作为个体标识符而 `year` 则表示时间序列[^1]。 #### 创建新的变量 可以利用 `generate` 或者其简化形式 `gen` 来创建新变量;如果需要更复杂的计算,则可选用增强版的 `egen` 函数。比如要基于现有变量 `ln_wage` 计算工资水平: ```stata generate wage = exp(ln_wage) ``` 上述代码片段展示了如何通过指数化对数工资得到实际工资值。 #### 数据清理与转换 当面对不同类型的数据整理需求时,有多种工具可供选择: - 使用 `rename` 修改变量名称; - 应用 `replace` 更新特定观测值; - 调用 `drop` 移除不需要的列或行; - 运用 `merge` 将多个文件中的信息结合起来; - 执行 `reshape` 实现宽窄表之间的互转; - 结合 `substr()` 提取字符串的部分用于进步加工。 这些功能有助于准备适合建模使用的高质量输入资料[^3]。 #### 描述统计分析 初步了解数据特征的个重要环节就是执行描述性统计。这可以通过简单的 `summarize` 命令完成,它会给出系列有用的汇总指标如平均数、标准差等: ```stata summarize ln_wage age tenure ``` 此指令能够快速获取选定几个核心经济变量的关键统计数据。 #### 处理重复记录 为了避免潜在偏差影响最终结论,应当识别并移除任何不必要的冗余条目。为此目的设计了专门的功能组合——先按某些字段排序再去除完全相同的实例: ```stata bysort varlist: gen dup = cond(_N==1,0,_n) drop if dup>1 ``` 这里展示了种有效的方法来消除可能存在的多重录入问题。 #### OLS 回归入门指南 针对初学者而言,掌握普通最小二乘法(OLS)回归技巧是非常重要的步。虽然这部分内容主要涉及计量经济学原理而非纯粹的技术实现细节,但在实践中正确运用软件平台同样不可或缺。具体到Stata环境里,可以从简单线性关系入手逐步深入学习更加复杂的情形[^2]。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哈伦2019

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值