八、结合DMSP/OLS等夜光数据和兴趣点(POI)城市建成区提取——理论介绍

本文探讨了利用DMSP/OLS和NPP/VIIRS夜间灯光数据结合POI数据提取城市建成区的理论,旨在解决低分辨率灯光数据导致的精度问题。通过核密度估计和形态学运算,结合POI的高精度信息,提高了建成区边界提取的准确性,减少“灯光溢出”现象,并通过相交和形态学运算优化结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

夜间灯光数据是卫星传感器对夜间建筑物,道路和交通工具等发出灯光的记录,被广泛应用于城市建成区提取中。利用夜间灯光数据提取城市的建成区,能在很大程度上避免传统多光谱遥感的光谱混淆 。

但由于常用的夜间灯光数据分辨率较低,如 DMSP-OLS和NPP-VIRS夜间灯光数据分辨率分别约为1km和500m,基于夜间灯光数据的建成区提取研究主要集中在国家尺度上。受传感器本身分辨率的限制,单纯依靠夜间灯光数据,很难提取城市尺度更精细的建成区边界。一些研究者尝试融合其他分辨率较高的遥感影像提高夜间灯光数据对建成区的提取精度﹐以扩展夜间灯光数据在更小尺度上的应用。现有研究多将30m分辨率的Landsat影像的建成区提取结果与夜间灯光数据的提取结果相融合,获得更加精细的建成区形态。由于城市边缘存在大量建成区与裸露土地交错分布的地带,在Landsat影像中易形成混合像元且两类地物的光谱特征相似,在多光谱影像上难以区分。
融合多源遥感数据提取得到的建成区边界与使用单一数据源提取建成区的结果相比精度有一定的提升,但准确度还是有提升空间。同时,夜间灯光数据提取 建成区时还存 在“灯光溢出”的现象,使 得探测到的区域范围明显大于实际的建成区。为此,一些研究者 提 出亮度校正、聚类阈值和邻域分析等方法,从图像亮度、阈值选取规则和邻域统计关系入手提高建成区提取精度,一定程度上改善了“灯 光溢出”问题。

兴趣点数据含有精确的位置信息和丰富的属性信息,其密度分布在城市和农村存在显著差异,因此被一些研究者应用于建成区提取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

端木宛白的GIS课堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值