一、前言
空间自相关通常用来测度与判断具有某种经济属性的空间分布与其临近 区域是否存在相关性及相关程度,它能形象直观地表达某种经济现象的空间 关联性与差异性,从地理空间上找出区域经济属性的分布特征和规律,是否有 聚集特性或相互依赖性存在。空间自相关包括全局型自相关和局部型自相关, 其中全局指标可从区域整体上测度某一属性的空间集聚程度,局部指标可用于探索集聚中心的空间位置。
二、空间自相关理论基础
1、全局空间自相关
全局空间自相关是对属性值在整个区域的空间特征的描述。表示全局空间自相关的指标和方法很多,主要有全局 Morans I全局 Gearys C 和全局Getis-Ord G,都是通过比较邻近空间位置观察值的相似程度来测量全局空间自相 关的。在 Arcgis 环境下,全局空间自相关提供了 Morans I全局 Gearys C 和全局Getis-Ord G方法。
(1) 全局 Morans I 方法
其中,n为样本量,即空间位置的个数。Xi、Xj 是空间位置 i和 j的观察值, 空间权重 Wij 表示空间位置 i 和 j的邻近关系,通常由以下几种空间权重:一类 是 INVERSE_DISTANCE:即与远处的要素相比,附近的邻近要素对目标要素的 计算的影响要大一些。二是 INVERSE_DISTANCE_SQUARED,与 INVERSE_DISTANCE 类似,但它的坡度更明显,因此影响下降得更快,并且只有目标要素的最近邻域会对要素的计算产生重